Characterization of the transcriptional divergence between the subspecies of cultivated rice (Oryza sativa).

Malachy T Campbell, Qian Du, Kan Liu, Sandeep Sharma, Chi Zhang, Harkamal Walia
Author Information
  1. Malachy T Campbell: Department of Agronomy and Horticulture, University of Nebraska Lincoln, 1825 N 38th St., Lincoln, 68583, NE, USA. campbell.malachy@gmail.com. ORCID
  2. Qian Du: School of Biological Sciences, University of Nebraska Lincoln, 1901 Vine St., Lincoln, 68503, NE, USA.
  3. Kan Liu: School of Biological Sciences, University of Nebraska Lincoln, 1901 Vine St., Lincoln, 68503, NE, USA.
  4. Sandeep Sharma: Department of Agronomy and Horticulture, University of Nebraska Lincoln, 1825 N 38th St., Lincoln, 68583, NE, USA.
  5. Chi Zhang: School of Biological Sciences, University of Nebraska Lincoln, 1901 Vine St., Lincoln, 68503, NE, USA.
  6. Harkamal Walia: Department of Agronomy and Horticulture, University of Nebraska Lincoln, 1825 N 38th St., Lincoln, 68583, NE, USA. campbell.malachy@gmail.com.

Abstract

BACKGROUND: Cultivated rice consists of two subspecies, Indica and Japonica, that exhibit well-characterized differences at the morphological and genetic levels. However, the differences between these subspecies at the transcriptome level remains largely unexamined. Here, we provide a comprehensive characterization of transcriptome divergence and cis-regulatory variation within rice using transcriptome data from 91 accessions from a rice diversity panel (RDP1).
RESULTS: The transcriptomes of the two subspecies of rice are highly divergent. Japonica have significantly lower expression and genetic diversity relative to Indica, which is likely a consequence of a population bottleneck during Japonica domestication. We leveraged high-density genotypic data and transcript levels to identify cis-regulatory variants that may explain the genetic divergence between the subspecies. We identified significantly more eQTL that were specific to the Indica subspecies compared to Japonica, suggesting that the observed differences in expression and genetic variability also extends to cis-regulatory variation.
CONCLUSIONS: Using RNA sequencing data for 91diverse rice accessions and high-density genotypic data, we show that the two species are highly divergent with respect to gene expression levels, as well as the genetic regulation of expression. The data generated by this study provide, to date, the largest collection of genome-wide transcriptional levels for rice, and provides a community resource to accelerate functional genomic studies in rice.

Keywords

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Nat Commun. 2011 Sep 13;2:467 [PMID: 21915109]
  3. Nat Genet. 2016 Sep;48(9):1094-100 [PMID: 27479908]
  4. Science. 2002 Apr 5;296(5565):92-100 [PMID: 11935018]
  5. Theor Appl Genet. 1987 May;74(1):21-30 [PMID: 24241451]
  6. Planta. 2008 Jul;228(2):355-65 [PMID: 18449564]
  7. Plant J. 2012 Jun;70(5):769-82 [PMID: 22268451]
  8. Plant Mol Biol. 2007 Mar;63(5):609-23 [PMID: 17160619]
  9. PLoS Genet. 2007 Sep;3(9):1745-56 [PMID: 17907810]
  10. Nat Genet. 2012 Oct;44(10):1084-9 [PMID: 22941192]
  11. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  12. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  13. Nature. 2018 May;557(7703):43-49 [PMID: 29695866]
  14. Nucleic Acids Res. 2017 Jan 4;45(D1):D1075-D1081 [PMID: 27899667]
  15. Plant Mol Biol. 2004 Mar;54(4):533-47 [PMID: 15316288]
  16. Nat Genet. 2010 Nov;42(11):961-7 [PMID: 20972439]
  17. Plant Physiol. 2008 Apr;146(4):1637-50 [PMID: 18258694]
  18. Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20417-22 [PMID: 21048083]
  19. Genetics. 2007 Dec;177(4):2223-32 [PMID: 17947413]
  20. Genome Res. 2010 Sep;20(9):1238-49 [PMID: 20627892]
  21. Plant Cell. 2005 Dec;17(12):3311-25 [PMID: 16278346]
  22. Plant Mol Biol. 2016 Jul;91(4-5):413-27 [PMID: 27039184]
  23. Genome Biol. 2014;15(11):506 [PMID: 25468217]
  24. Nat Commun. 2016 Feb 04;7:10532 [PMID: 26842267]
  25. Nat Biotechnol. 2011 Dec 11;30(1):105-11 [PMID: 22158310]
  26. PLoS Genet. 2011 Feb;7(2):e1001317 [PMID: 21383966]
  27. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  28. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  29. Genetics. 2005 Mar;169(3):1631-8 [PMID: 15654106]
  30. Nucleic Acids Res. 2015 Jan;43(Database issue):D1023-7 [PMID: 25429973]
  31. PLoS Genet. 2011 Aug;7(8):e1002221 [PMID: 21829395]
  32. Science. 2002 Apr 5;296(5565):79-92 [PMID: 11935017]
  33. Nat Genet. 2018 Feb;50(2):285-296 [PMID: 29358651]
  34. Nature. 2012 Oct 25;490(7421):497-501 [PMID: 23034647]
  35. Rice (N Y). 2013 Aug 10;6(1):19 [PMID: 24280533]
  36. PLoS Genet. 2013 May;9(5):e1003486 [PMID: 23671422]
  37. Proc Natl Acad Sci U S A. 2001 Jul 17;98(15):8909-14 [PMID: 11438692]
  38. BMC Genomics. 2014 Feb 05;15:101 [PMID: 24498868]
  39. Genetics. 2000 Jun;155(2):945-59 [PMID: 10835412]
  40. Annu Rev Plant Biol. 2015;66:441-64 [PMID: 25534513]
  41. J Dairy Sci. 2008 Nov;91(11):4414-23 [PMID: 18946147]
  42. Genetics. 2014 Apr;196(4):937-49 [PMID: 24424778]
  43. BMC Genomics. 2007 Jun 08;8:154 [PMID: 17555605]
  44. Plant Physiol. 2008 Sep;148(1):25-40 [PMID: 18650402]
  45. Nat Commun. 2018 Aug 29;9(1):3519 [PMID: 30158584]
  46. Proc Natl Acad Sci U S A. 2018 Feb 27;115(9):E1955-E1962 [PMID: 29444864]
  47. Genome Res. 2004 Sep;14(9):1812-9 [PMID: 15342564]

MeSH Term

Crops, Agricultural
Gene Expression Profiling
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genetic Variation
Oryza
Plant Proteins
Quantitative Trait Loci
Sequence Analysis, RNA
Species Specificity
Whole Genome Sequencing

Chemicals

Plant Proteins

Word Cloud

Similar Articles

Cited By