Genetic regulation of the bacterial omega-3 polyunsaturated fatty acid biosynthesis pathway.

Marco N Allemann, Eric E Allen
Author Information
  1. Marco N Allemann: Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA.
  2. Eric E Allen: Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA eallen@ucsd.edu.

Abstract

A characteristic among many marine Gammaproteobacteria is the biosynthesis and incorporation of omega-3 polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids is mediated by a polyketide/fatty acid synthase mechanism encoded by a set of five genes, This unique fatty acid synthesis pathway co-exists with the principal type II dissociated fatty acid synthesis pathway, which is responsible for the biosynthesis of core saturated, monounsaturated, and hydroxylated fatty acids used in phospholipid and lipid A biosynthesis. In this work, a genetic approach was undertaken to elucidate genetic regulation of the genes in the model marine bacterium SS9. Using a reporter gene fusion, we showed that expression of the operon is down regulated in response to exogenous fatty acids, particularly long chain monounsaturated fatty acids. This regulation occurs independently of the canonical fatty acid regulators, FabR and FadR, present in SS9. Transposon mutagenesis and screening of a library of mutants identified a novel transcriptional regulator, which we have designated to be responsible for the observed regulation of the operon in SS9. Gel mobility shift and DNase I footprinting assays confirmed that PfaF binds the promoter and identified the PfaF binding site. The production of long-chain omega-3 polyunsaturated fatty acids (PUFA) by marine Gammaproteobacteria, particularly those from deep-sea environments, has been known for decades. These unique fatty acids are produced by a polyketide-type mechanism and subsequently incorporated into the phospholipid membrane. While much research has focused on the biosynthesis genes, their products and the phylogenetic distribution of these gene clusters, no prior studies have detailed the genetic regulation of this pathway. This study describes how this pathway is regulated under various culture conditions and has identified and characterized a fatty acid responsive transcriptional regulator specific to PUFA biosynthesis.

References

Science. 2001 Jul 13;293(5528):290-3 [PMID: 11452122]
Biochem Biophys Res Commun. 2018 Jun 7;500(3):704-709 [PMID: 29678574]
Microbiology (Reading). 2002 Jun;148(Pt 6):1903-1913 [PMID: 12055309]
Nat Rev Microbiol. 2004 Jan;2(1):57-65 [PMID: 15035009]
Proc Natl Acad Sci U S A. 2003 Sep 16;100(19):10983-8 [PMID: 12939408]
PLoS One. 2011;6(5):e20146 [PMID: 21629834]
J Bacteriol. 1983 Jul;155(1):311-6 [PMID: 6305915]
J Biol Chem. 2018 Aug 10;293(32):12491-12501 [PMID: 29921583]
J Biomol Tech. 2006 Apr;17(2):103-13 [PMID: 16741237]
Mar Drugs. 2016 May 12;14(5): [PMID: 27187420]
Prog Lipid Res. 2013 Jul;52(3):249-76 [PMID: 23500459]
Mol Microbiol. 2011 Feb;79(3):716-28 [PMID: 21255114]
J Bacteriol. 2008 Dec;190(23):7633-44 [PMID: 18835990]
Microbiol Mol Biol Rev. 2013 Sep;77(3):440-75 [PMID: 24006471]
Front Microbiol. 2014 Dec 22;5:736 [PMID: 25566241]
J Bacteriol. 2001 Oct;183(20):5982-90 [PMID: 11566998]
J Biochem. 2018 Jul 1;164(1):33-39 [PMID: 29415144]
Gene. 1998 Jan 30;207(2):149-57 [PMID: 9511756]
J Bacteriol. 2010 Jan;192(1):280-5 [PMID: 19880602]
EcoSal Plus. 2008 Sep;3(1): [PMID: 26443744]
J Biol Chem. 2002 May 3;277(18):15558-65 [PMID: 11859088]
J Biol Chem. 2009 Dec 11;284(50):34880-8 [PMID: 19854834]
Appl Environ Microbiol. 1999 Apr;65(4):1710-20 [PMID: 10103272]
Environ Microbiol. 2011 Mar;13(3):684-95 [PMID: 21105981]
Mol Microbiol. 2011 Apr;80(1):195-218 [PMID: 21276098]
J Bacteriol. 2008 Mar;190(5):1699-709 [PMID: 18156275]
Appl Environ Microbiol. 1997 Jul;63(7):2572-7 [PMID: 16535638]
mBio. 2013 May 14;4(3):e00305-13 [PMID: 23674613]
Appl Environ Microbiol. 1996 May;62(5):1747-51 [PMID: 8633873]
Genome Res. 2009 Jul;19(7):1301-8 [PMID: 19228590]
Prog Lipid Res. 2004 Sep;43(5):383-402 [PMID: 15458813]
Mol Microbiol. 2006 Apr;60(2):260-73 [PMID: 16573679]
J Bacteriol. 2009 Jan;191(2):632-40 [PMID: 19011019]
J Bacteriol. 2000 Mar;182(5):1264-71 [PMID: 10671446]
Biotechniques. 2005 May;38(5):708, 710, 712 [PMID: 15945369]
Mol Microbiol. 1998 Aug;29(4):937-43 [PMID: 9767562]
Mol Microbiol. 2011 Aug;81(4):1020-33 [PMID: 21771112]
Appl Environ Microbiol. 2007 Feb;73(3):665-70 [PMID: 17122401]
Front Cell Infect Microbiol. 2017 Dec 12;7:513 [PMID: 29312893]
Methods Enzymol. 2018;605:3-32 [PMID: 29909829]
J Bacteriol. 2017 Mar 14;199(7): [PMID: 28115548]
Cold Spring Harb Protoc. 2013 Jul 01;2013(7):636-9 [PMID: 23818676]
Biochim Biophys Acta. 2013 Mar;1831(3):495-502 [PMID: 22981714]
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3028-33 [PMID: 15699331]
J Am Chem Soc. 2008 May 21;130(20):6336-7 [PMID: 18444614]
J Bacteriol. 1993 Dec;175(23):7533-40 [PMID: 8244922]
J Bacteriol. 2009 Apr;191(8):2574-84 [PMID: 19201790]
Biotechnol Lett. 2008 Dec;30(12):2139-42 [PMID: 18661106]
Mol Microbiol. 2007 Nov;66(3):622-32 [PMID: 17877713]
Microbiol Rev. 1993 Sep;57(3):522-42 [PMID: 8246839]
Cell. 1992 Aug 21;70(4):671-9 [PMID: 1505031]
Arch Microbiol. 2002 Sep;178(3):193-201 [PMID: 12189420]

Word Cloud

Similar Articles

Cited By