A role of the Nse4 kleisin and Nse1/Nse3 KITE subunits in the ATPase cycle of SMC5/6.
Lucie Vondrova, Peter Kolesar, Marek Adamus, Matej Nociar, Antony W Oliver, Jan J Palecek
Author Information
Lucie Vondrova: National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
Peter Kolesar: National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
Marek Adamus: Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
Matej Nociar: National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic.
Antony W Oliver: Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9RQ, United Kingdom.
Jan J Palecek: National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500, Brno, Czech Republic. jpalecek@sci.muni.cz.
The SMC (Structural Maintenance of Chromosomes) complexes are composed of SMC dimers, kleisin and kleisin-interacting (HAWK or KITE) subunits. Mutual interactions of these subunits constitute the basal architecture of the SMC complexes. In addition, binding of ATP molecules to the SMC subunits and their hydrolysis drive dynamics of these complexes. Here, we developed new systems to follow the interactions between SMC5/6 subunits and the relative stability of the complex. First, we show that the N-terminal domain of the Nse4 kleisin molecule binds to the SMC6 neck and bridges it to the SMC5 head. Second, binding of the Nse1 and Nse3 KITE proteins to the Nse4 linker increased stability of the ATP-free SMC5/6 complex. In contrast, binding of ATP to SMC5/6 containing KITE subunits significantly decreased its stability. Elongation of the Nse4 linker partially suppressed instability of the ATP-bound complex, suggesting that the binding of the KITE proteins to the Nse4 linker constrains its limited size. Our data suggest that the KITE proteins may shape the Nse4 linker to fit the ATP-free complex optimally and to facilitate opening of the complex upon ATP binding. This mechanism suggests an important role of the KITE subunits in the dynamics of the SMC5/6 complexes.
References
Schwarzer, W. et al. Two independent modes of chromatin organization revealed by cohesin removal. Nature 551, 51–56, https://doi.org/10.1038/nature24281 (2017).
[DOI: 10.1038/nature24281]
Kschonsak, M. & Haering, C. H. Shaping mitotic chromosomes: From classical concepts to molecular mechanisms. Bioessays 37, 755–766, https://doi.org/10.1002/bies.201500020 (2015).
[DOI: 10.1002/bies.201500020]
Aragon, L. In Annual Review of Genetics, Vol 52 Vol. 52 Annual Review of Genetics (ed. Bonini, N. M.) 89–107 (Annual Reviews, 2018).
Palecek, J. J. SMC5/6: Multifunctional Player in Replication. Genes 10, E7, https://doi.org/10.3390/genes10010007 (2019).
[DOI: 10.3390/genes10010007]
Bürmann, F. & Gruber, S. SMC condensin: promoting cohesion of replicon arms. Nat. Struct. Mol. Biol. 22, 653–655, https://doi.org/10.1038/nsmb.3082 (2015).
[DOI: 10.1038/nsmb.3082]
van der Crabben, S. N. et al. Destabilized SMC5/6 complex leads to chromosome breakage syndrome with severe lung disease. J. Clin. Investigation 126, 2881–2892, https://doi.org/10.1172/jci82890 (2016).
[DOI: 10.1172/jci82890]
Palecek, J. J. & Gruber, S. Kite Proteins: a Superfamily of SMC/Kleisin Partners Conserved Across Bacteria, Archaea, and Eukaryotes. Structure 23, 2183–2190, https://doi.org/10.1016/j.str.2015.10.004 (2015).
[DOI: 10.1016/j.str.2015.10.004]
Wells, J. N., Gligoris, T. G., Nasmyth, K. A. & Marsh, J. A. Evolution of condensin and cohesin complexes driven by replacement of Kite by Hawk proteins. Curr. Biol. 27, R17–R18, https://doi.org/10.1016/j.cub.2016.11.050 (2017).
[DOI: 10.1016/j.cub.2016.11.050]
Burmann, F. et al. Tuned SMC Arms Drive Chromosomal Loading of Prokaryotic Condensin. Mol. Cell 65, 861–+, https://doi.org/10.1016/j.molcel.2017.01.026 (2017).
[DOI: 10.1016/j.molcel.2017.01.026]
Diebold-Durand, M. L. et al. Structure of Full-Length SMC and Rearrangements Required for Chromosome Organization. Mol. Cell 67, 334–347.e335, https://doi.org/10.1016/j.molcel.2017.06.010 (2017).
[DOI: 10.1016/j.molcel.2017.06.010]
Nasmyth, K. & Haering, C. H. The structure and function of SMC and kleisin complexes. Annu. Rev. Biochem. 74, 595–648 (2005).
[DOI: 10.1146/annurev.biochem.74.082803.133219]
Hassler, M., Shaltiel, I. A. & Haering, C. H. Towards a Unified Model of SMC Complex Function. Curr. Biol. 28, R1266–R1281, https://doi.org/10.1016/j.cub.2018.08.034 (2018).
[DOI: 10.1016/j.cub.2018.08.034]
Gligoris, T. & Löwe, J. Structural Insights into Ring Formation of Cohesin and Related Smc Complexes. Trends Cell Biol. 26, 680–693, https://doi.org/10.1016/j.tcb.2016.04.002 (2016).
[DOI: 10.1016/j.tcb.2016.04.002]
Lammens, A., Schele, A. & Hopfner, K. P. Structural biochemistry of ATP-driven dimerization and DNA-stimulated activation of SMC ATPases. Curr. Biol. 14, 1778–1782 (2004).
[DOI: 10.1016/j.cub.2004.09.044]
Arumugam, P. et al. ATP hydrolysis is required for cohesin’s association with chromosomes. Curr. Biol. 13, 1941–1953 (2003).
[DOI: 10.1016/j.cub.2003.10.036]
Bürmann, F. et al. An asymmetric SMC-kleisin bridge in prokaryotic condensin. Nat. Struct. Mol. Biol. 20, 371–379, https://doi.org/10.1038/nsmb.2488 (2013).
[DOI: 10.1038/nsmb.2488]
Gligoris, T. G. et al. Closing the cohesin ring: structure and function of its Smc3-kleisin interface. Science 346, 963–967, https://doi.org/10.1126/science.1256917 (2014).
[DOI: 10.1126/science.1256917]
Zawadzka, K. et al. MukB ATPases are regulated independently by the N- and C-terminal domains of MukF kleisin. Elife 7, https://doi.org/10.7554/eLife.31522 (2018).
Murayama, Y. & Uhlmann, F. DNA Entry into and Exit out of the Cohesin Ring by an Interlocking Gate Mechanism. Cell 163, 1628–1640, https://doi.org/10.1016/j.cell.2015.11.030 (2015).
[DOI: 10.1016/j.cell.2015.11.030]
Beckouët, F. et al. Releasing Activity Disengages Cohesin’s Smc3/Scc1 Interface in a Process Blocked by Acetylation. Mol. Cell 61, 563–574, https://doi.org/10.1016/j.molcel.2016.01.026 (2016).
[DOI: 10.1016/j.molcel.2016.01.026]
Buheitel, J. & Stemmann, O. Prophase pathway-dependent removal of cohesin from human chromosomes requires opening of the Smc3-Scc1 gate. EMBO J. 32, 666–676, https://doi.org/10.1038/emboj.2013.7 (2013).
[DOI: 10.1038/emboj.2013.7]
Eichinger, C. S., Kurze, A., Oliveira, R. A. & Nasmyth, K. Disengaging the Smc3/kleisin interface releases cohesin from Drosophila chromosomes during interphase and mitosis. EMBO J. 32, 656–665, https://doi.org/10.1038/emboj.2012.346 (2013).
[DOI: 10.1038/emboj.2012.346]
Chan, K. L. et al. Cohesin’s DNA exit gate is distinct from its entrance gate and is regulated by acetylation. Cell 150, 961–974, https://doi.org/10.1016/j.cell.2012.07.028 (2012).
[DOI: 10.1016/j.cell.2012.07.028]
Elbatsh, A. M. O. et al. Cohesin Releases DNA through Asymmetric ATPase-Driven Ring Opening. Mol. Cell 61, 575–588, https://doi.org/10.1016/j.molcel.2016.01.025 (2016).
[DOI: 10.1016/j.molcel.2016.01.025]
Hassler, M. et al. Structural Basis of an Asymmetric Condensin ATPase Cycle. Mol. Cell 74, 1175–1188.e1179, https://doi.org/10.1016/j.molcel.2019.03.037 (2019).
[DOI: 10.1016/j.molcel.2019.03.037]
Minnen, A. et al. Control of Smc Coiled Coil Architecture by the ATPase Heads Facilitates Targeting to Chromosomal ParB/parS and Release onto Flanking DNA. Cell Rep. 14, 2003–2016, https://doi.org/10.1016/j.celrep.2016.01.066 (2016).
[DOI: 10.1016/j.celrep.2016.01.066]
Kamada, K., Su’etsugu, M., Takada, H., Miyata, M. & Hirano, T. Overall Shapes of the SMC-ScpAB Complex Are Determined by Balance between Constraint and Relaxation of Its Structural Parts. Structure 25, 603–616.e604, https://doi.org/10.1016/j.str.2017.02.008 (2017).
[DOI: 10.1016/j.str.2017.02.008]
Palecek, J., Vidot, S., Feng, M., Doherty, A. J. & Lehmann, A. R. The SMC5-6 DNA repair complex: Bridging of the SMC5-6 heads by the Kleisin, NSE4, and non-Kleisin subunits. J. Biol. Chem. 281, 36952–36959 (2006).
[DOI: 10.1074/jbc.M608004200]
Guerineau, M. et al. Analysis of the Nse3/MAGE-Binding Domain of the Nse4/EID Family Proteins. Plos one 7, e35813 (2012).
[DOI: 10.1371/journal.pone.0035813]
Paleček, J. J., Vondrová, L., Zábrady, K. & Otočka, J. Multicomponent Yeast Two-Hybrid System: Applications to Study Protein-Protein Interactions in SMC Complexes. Methods Mol. Biol. 2004, 79–90, https://doi.org/10.1007/978-1-4939-9520-2_7 (2019).
[DOI: 10.1007/978-1-4939-9520-2_7]
Duan, X. et al. Architecture of the Smc5/6 Complex of Saccharomyces cerevisiae Reveals a Unique Interaction between the Nse5-6 Subcomplex and the Hinge Regions of Smc5 and Smc6. J. Biol. Chem. 284, 8507–8515 (2009).
[DOI: 10.1074/jbc.M809139200]
Diaz, M. et al. SMC5/6 Complex Subunit NSE4A is Involved in DNA Damage Repair and Seed Development in Arabidopsis. Plant Cell, https://doi.org/10.1105/tpc.18.00043 (2019).
Sergeant, J. et al. Composition and architecture of the Schizosaccharomyces pombe Rad18 (Smc5-6) complex. Mol. Cell Biol. 25, 172–184 (2005).
[DOI: 10.1128/MCB.25.1.172-184.2005]
Hudson, J. J. R. et al. Interactions between the Nse3 and Nse4 Components of the SMC5-6 Complex Identify Evolutionarily Conserved Interactions between MAGE and EID Families. Plos one 6, https://doi.org/10.1371/journal.pone.0017270 (2011).
Kanno, T., Berta, D. G. & Sjögren, C. The Smc5/6 Complex Is an ATP-Dependent Intermolecular DNA Linker. Cell Rep. 12, 1471–1482, https://doi.org/10.1016/j.celrep.2015.07.048 (2015).
[DOI: 10.1016/j.celrep.2015.07.048]
Zabrady, K. et al. Chromatin association of the SMC5/6 complex is dependent on binding of its NSE3 subunit to DNA. Nucleic Acids Res. 44, 1064–1079, https://doi.org/10.1093/nar/gkv1021 (2016).
[DOI: 10.1093/nar/gkv1021]
Fousteri, M. I. & Lehmann, A. R. A novel SMC protein complex in Schizosaccharomyces pombe contains the Rad18 DNA repair protein. EMBO J. 19, 1691–1702 (2000).
[DOI: 10.1093/emboj/19.7.1691]
Kamada, K., Miyata, M. & Hirano, T. Molecular basis of SMC ATPase activation: role of internal structural changes of the regulatory subcomplex ScpAB. Structure 21, 581–594, https://doi.org/10.1016/j.str.2013.02.016 (2013).
[DOI: 10.1016/j.str.2013.02.016]
Woo, J. S. et al. Structural studies of a bacterial condensin complex reveal ATP-dependent disruption of intersubunit interactions. Cell. 136, 85–96 (2009).
[DOI: 10.1016/j.cell.2008.10.050]
Gloyd, M., Ghirlando, R. & Guarné, A. The role of MukE in assembling a functional MukBEF complex. J. Mol. Biol. 412, 578–590, https://doi.org/10.1016/j.jmb.2011.08.009 (2011).
[DOI: 10.1016/j.jmb.2011.08.009]
Pebernard, S., Wohlschlegel, J., McDonald, W. H., Yates, J. R. 3rd & Boddy, M. N. The Nse5-Nse6 dimer mediates DNA repair roles of the Smc5-Smc6 complex. Mol. Cell Biol. 26, 1617–1630 (2006).
[DOI: 10.1128/MCB.26.5.1617-1630.2006]
Ganji, M. et al. Real-time imaging of DNA loop extrusion by condensin. Science, https://doi.org/10.1126/science.aar7831 (2018).
Davidson, I. F. et al. DNA loop extrusion by human cohesin. Science, https://doi.org/10.1126/science.aaz3418 (2019).
Hirano, M. & Hirano, T. Positive and negative regulation of SMC-DNA interactions by ATP and accessory proteins. Embo J. 23, 2664–2673. Epub 2004 Jun 2663. (2004).
Ouyang, Z. & Yu, H. Releasing the cohesin ring: A rigid scaffold model for opening the DNA exit gate by Pds5 and Wapl. Bioessays 39, https://doi.org/10.1002/bies.201600207 (2017).
Soh, Y. M. et al. Molecular basis for SMC rod formation and its dissolution upon DNA binding. Mol. Cell 57, 290–303, https://doi.org/10.1016/j.molcel.2014.11.023 (2015).
[DOI: 10.1016/j.molcel.2014.11.023]
Chapard, C., Jones, R., van Oepen, T., Scheinost, J. C. & Nasmyth, K. Sister DNA Entrapment between Juxtaposed Smc Heads and Kleisin of the Cohesin Complex. Mol. Cell 75, 224–237.e225, https://doi.org/10.1016/j.molcel.2019.05.023 (2019).
[DOI: 10.1016/j.molcel.2019.05.023]
Bürmann, F. et al. A folded conformation of MukBEF and cohesin. Nat. Struct. Mol. Biol. 26, 227–236, https://doi.org/10.1038/s41594-019-0196-z (2019).
[DOI: 10.1038/s41594-019-0196-z]
Hara, K. et al. Structure of cohesin subcomplex pinpoints direct shugoshin-Wapl antagonism in centromeric cohesion. Nat. Struct. Mol. Biol. 21, 864–870, https://doi.org/10.1038/nsmb.2880 (2014).
[DOI: 10.1038/nsmb.2880]
Muir, K. W. et al. Structure of the Pds5-Scc1 Complex and Implications for Cohesin Function. Cell Rep. 14, 2116–2126, https://doi.org/10.1016/j.celrep.2016.01.078 (2016).
[DOI: 10.1016/j.celrep.2016.01.078]
Lee, B. G. et al. Crystal Structure of the Cohesin Gatekeeper Pds5 and in Complex with Kleisin Scc1. Cell Rep. 14, 2108–2115, https://doi.org/10.1016/j.celrep.2016.02.020 (2016).
[DOI: 10.1016/j.celrep.2016.02.020]
Moreno, S., Klar, A. & Nurse, P. Molecular genetic analysis of fission yeast Schizosaccharomyces pombe. Methods Enzymol. 194, 795–823, https://doi.org/10.1016/0076-6879(91)94059-l (1991).
[DOI: 10.1016/0076-6879(91)94059-l]
Kushnirov, V. V. Rapid and reliable protein extraction from yeast. Yeast 16, 857-860, 10.1002/1097-0061(20000630)16:9<857::aid-yea561>3.0.co;2-b (2000).
Zhang, Y. I-TASSER server for protein 3D structure prediction. BMC Bioinforma. 9, 40, https://doi.org/10.1186/1471-2105-9-40 (2008).
[DOI: 10.1186/1471-2105-9-40]
de Vries, S. J., van Dijk, M. & Bonvin, A. M. The HADDOCK web server for data-driven biomolecular docking. Nat. Protoc. 5, 883–897, https://doi.org/10.1038/nprot.2010.32 (2010).
[DOI: 10.1038/nprot.2010.32]
Furmanová, K. et al. COZOID: contact zone identifier for visual analysis of protein-protein interactions. BMC Bioinforma. 19, 125, https://doi.org/10.1186/s12859-018-2113-6 (2018).
[DOI: 10.1186/s12859-018-2113-6]
Byska, J., Jurcik, A., Furmanova, K., Kozlikova, B. & Palecek, J. J. Visual Analysis of Protein-Protein Interaction Docking Models Using COZOID Tool. Methods Mol. Biol. 2074, 81–94, https://doi.org/10.1007/978-1-4939-9873-9_7 (2020).
[DOI: 10.1007/978-1-4939-9873-9_7]