(CD166) as a gene expression marker for human mesenchymal stromal cell characterisation.

Bas Brinkhof, Bo Zhang, Zhanfeng Cui, Hua Ye, Hui Wang
Author Information
  1. Bas Brinkhof: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
  2. Bo Zhang: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
  3. Zhanfeng Cui: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
  4. Hua Ye: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.
  5. Hui Wang: Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom.

Abstract

BACKGROUND: Human mesenchymal stromal cells (MSCs) phenotypically share their positive expression of the International Society for Cell and Gene Therapy (ISCT) markers CD73, CD90 and CD105 with fibroblasts. Fibroblasts are often co-isolated as an unwanted by-product from biopsy and they can rapidly overgrow the MSCs in culture. Indeed, many other surface markers have been proposed, though no unique MSC specific marker has been identified yet. Quantitative PCR (qPCR) is a precise, efficient and rapid method for gene expression analysis. To identify a marker suitable for accurate MSC characterisation, qPCR was exploited.
METHODS AND RESULTS: Two commercially obtained bone marrow (BM) derived MSCs and an hTERT immortalised BM-MSC line (MSC-TERT) have been cultured for different days and at different oxygen levels before RNA extraction. Together with RNA samples previous extracted from umbilical cord derived MSCs and MSC-TERT cells cultured in 2D or 3D, this heterogeneous sample set was quantitatively analysed for the expression levels of 18 candidate MSC marker genes. The expression levels in MSCs were compared with the expression levels in fibroblasts to verify the differentiation capability of these genes between MSCs and fibroblasts. None of the ISCT markers could differentiate between fibroblasts and MSCs. A total of six other genes (, , , , , and ) were identified as possible biomarkers for accurate identification of MSCs.
CONCLUSION: Justified by considerations on expression level, reliability and specificity, Activated-Leukocyte Cell Adhesion Molecule () was the best candidate for improving the biomarker set of MSC identification.

Keywords

(q)PCR, (quantitative) polymerase chain reaction AD, adipose AF, Amniotic Fluid ALCAM, Activated-Leukocyte Cell Adhesion Molecule Activated-leukocyte cell adhesion molecule BM, bone marrow BSG, Basigin Biomarker CD, cluster of differentiation CLIC1, chloride intracellular channel 1 CLIC4, chloride intracellular channel 4 Cq, Quantification cycle DF, Dermal Fibroblasts DP, Dental Pulp EDIL3, EGF like repeats and discoidin domains 3 ENG, Endoglin EPHA2, EPH receptor A2 ER, Endoplasmatic Reticulum FACS, Fluorescence Assisted Cell Sorting FN1, Fibronectin 1 IGFBP7, insulin like growth factor binding protein 7 ISCT, International Society for Cell and Gene Therapy ITGA1, integrin subunit alpha 1 LAMP1, lysosomal associated membrane protein 1 LRRC59, leucine rich repeat containing 59 MCAM, melanoma cell adhesion molecule MM, Multiple Myeloma MPC, Mesenchymal Progenitor Cell MSC MSC, Mesenchymal Stromal Cells NECTIN2, nectin cell adhesion molecule 2 NK, Natural Killer NT5E, 5′-nucleotidase ecto OS, Osteosarcoma PL, Placenta PPIA, peptidylprolyl isomerase A PUM1, pumilio RNA binding family member 1 RM, Regenerative Medicine RNA RNA-seq, RNA sequencing RT, Reverse Transcriptase Regenerative medicine SEM, Standard Error of the Mean TBP, TATA-box binding protein TCF, Tissue Culture Plate TE, Tissue Engineering TFRC, transferrin receptor THY1, Thy-1 cell surface antigen TLN1, Talin 1 TMEM47, transmembrane protein 47 UC, umbilical cord YWHAZ, tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta cDNA, DNA complementary to RNA qPCR

References

Bone. 2009 Dec;45(6):1175-85 [PMID: 19703605]
IEEE Trans Cybern. 2014 Nov;44(11):2167-77 [PMID: 25330477]
J Cell Physiol. 2000 Sep;184(3):319-25 [PMID: 10911362]
Blood. 2006 Feb 15;107(4):1484-90 [PMID: 16239427]
Cytotherapy. 2006;8(4):315-7 [PMID: 16923606]
Anal Biochem. 2006 Sep 1;356(1):36-43 [PMID: 16844072]
Nucleic Acids Res. 2009 Apr;37(6):e45 [PMID: 19237396]
Br J Haematol. 2019 Feb;184(4):578-593 [PMID: 30408155]
Stem Cells. 2014 Jun;32(6):1408-19 [PMID: 24578244]
Br J Haematol. 2003 Mar;120(5):846-9 [PMID: 12614220]
Clin Exp Dermatol. 2016 Jul;41(5):533-40 [PMID: 26644074]
Vet Immunol Immunopathol. 2011 Nov 15;144(1-2):147-54 [PMID: 21782255]
J Biol Chem. 1997 May 9;272(19):12575-82 [PMID: 9139710]
Genome Biol. 2002 Jun 18;3(7):RESEARCH0034 [PMID: 12184808]
J Bone Miner Res. 1998 Apr;13(4):655-63 [PMID: 9556065]
F1000Res. 2017 Apr 20;6: [PMID: 28491279]
Stem Cells Transl Med. 2014 May;3(5):632-5 [PMID: 24692588]
Gene. 1995 Jul 4;159(2):267-72 [PMID: 7622062]
Nat New Biol. 1973 Nov 21;246(151):76-8 [PMID: 4357310]
Stem Cell Res Ther. 2016 Jul 28;7(1):97 [PMID: 27465541]
Stem Cells Dev. 2011 Jan;20(1):53-66 [PMID: 20528146]
Proteomics. 2007 Nov;7(22):4181-91 [PMID: 17994623]
Stem Cells Dev. 2016 Sep 15;25(18):1355-65 [PMID: 27484587]
Int J Mol Sci. 2017 Aug 12;18(8): [PMID: 28805694]
Cell Reprogram. 2015 Dec;17(6):472-83 [PMID: 26540004]
Stem Cells Transl Med. 2017 Jun;6(6):1445-1451 [PMID: 28452204]
Virology. 1998 Jun 20;246(1):179-89 [PMID: 9657005]
Biotechnol Prog. 2017 Nov;33(6):1601-1613 [PMID: 28653478]
Connect Tissue Res. 2011;52(6):503-11 [PMID: 21787134]
Cell Tissue Res. 2003 Sep;313(3):281-90 [PMID: 12883998]
FASEB J. 2013 Mar;27(3):978-90 [PMID: 23169771]
Genome Biol. 2007;8(2):R19 [PMID: 17291332]
J Biol Chem. 1993 Feb 5;268(4):2989-96 [PMID: 8428973]
Stem Cell Res Ther. 2015 Dec 01;6:234 [PMID: 26620426]
Nature. 1981 Jan 1;289(5793):60-4 [PMID: 6969855]
BMC Genomics. 2016 Nov 21;17(1):944 [PMID: 27871224]
Gastroenterology. 2013 Aug;145(2):383-95.e1-21 [PMID: 23644405]
PLoS One. 2018 Dec 31;13(12):e0209772 [PMID: 30596738]
Clin Exp Metastasis. 2019 Apr;36(2):87-95 [PMID: 30778704]
Stem Cells. 2018 Jan;36(1):7-10 [PMID: 28960677]
Circulation. 2004 Mar 16;109(10):1314-9 [PMID: 14981004]
Mol Biol Cell. 2002 Dec;13(12):4279-95 [PMID: 12475952]
Int J Mol Sci. 2016 Jul 09;17(7): [PMID: 27409608]
Cytotherapy. 2014 Jan;16(1):3-16 [PMID: 24113426]
Cytometry A. 2018 Jan;93(1):32-49 [PMID: 28906582]
Tumour Biol. 2016 Oct;37(10):14069-14081 [PMID: 27507615]
Mol Membr Biol. 2003 Jan-Mar;20(1):1-11 [PMID: 12745921]
Int J Stem Cells. 2019 Mar 30;12(1):84-94 [PMID: 30836724]
Curr Stem Cell Res Ther. 2017;12(6):484-492 [PMID: 27133085]
Taiwan J Obstet Gynecol. 2015 Dec;54(6):749-56 [PMID: 26700997]
BMC Genomics. 2001;2:3 [PMID: 11472633]
PLoS One. 2012;7(6):e38833 [PMID: 22723894]
J Virol. 2000 Feb;74(3):1267-74 [PMID: 10627537]
Stem Cells. 2013 Mar;31(3):560-71 [PMID: 23280653]
Cytotherapy. 2009;11(5):534-47 [PMID: 19548144]
Biol Cell. 2011 Apr;103(4):197-208 [PMID: 21332447]
J Biol Chem. 1999 Apr 16;274(16):11101-9 [PMID: 10196194]
J Exp Med. 1995 Jun 1;181(6):2213-20 [PMID: 7760007]
Biomaterials. 2011 Sep;32(27):6399-411 [PMID: 21636130]
Stem Cells Dev. 2008 Oct;17(5):929-40 [PMID: 18564033]
J Neuroimmunol. 2014 Nov 15;276(1-2):98-103 [PMID: 25216742]
Vaccines (Basel). 2016 Nov 08;4(4): [PMID: 27834810]
Adv Exp Med Biol. 2014;819:21-39 [PMID: 25023165]
J Cell Sci. 2006 Jun 1;119(Pt 11):2204-13 [PMID: 16684817]
Cell Transplant. 2011;20(10):1547-59 [PMID: 21396164]
J Mol Histol. 2007 Oct;38(5):449-58 [PMID: 17694277]
Stem Cells Int. 2016;2016:3453890 [PMID: 27087814]
Int J Cancer. 2011 Jul 15;129(2):319-30 [PMID: 20878957]
Biotechnol Lett. 2009 Dec;31(12):1843-50 [PMID: 19693443]
Exp Cell Res. 1989 Dec;185(2):519-28 [PMID: 2689198]
Stem Cells Dev. 2014 Jun 1;23(11):1157-67 [PMID: 24422625]
Genes Dev. 1998 Jan 1;12(1):21-33 [PMID: 9420328]
Neurosci Lett. 2003 Mar 13;339(1):62-6 [PMID: 12618301]
Stem Cell Reports. 2015 Mar 10;4(3):473-88 [PMID: 25684225]

Word Cloud

Similar Articles

Cited By