Glycogen accumulation, central carbon metabolism, and aging of hematopoietic stem and progenitor cells.
Laura Poisa-Beiro, Judith Thoma, Jonathan Landry, Sven Sauer, Akihisa Yamamoto, Volker Eckstein, Natalie Romanov, Simon Raffel, Georg F Hoffmann, Peer Bork, Vladimir Benes, Anne-Claude Gavin, Motomu Tanaka, Anthony D Ho
Author Information
Laura Poisa-Beiro: Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Judith Thoma: Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany.
Jonathan Landry: Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
Sven Sauer: Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
Akihisa Yamamoto: Center for Integrative Medicine and Physics, Institute for Advanced Study, Kyoto University, Kyoto, 606-8501, Japan.
Volker Eckstein: Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Natalie Romanov: Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
Simon Raffel: Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
Georg F Hoffmann: Division of Child Neurology and Metabolic Diseases, Centre for Child and Adolescent Medicine, University Hospital Heidelberg, Im Neuenheimer Feld 430, 69120, Heidelberg, Germany.
Peer Bork: Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.
Vladimir Benes: Genomics Core Facility, European Molecular Biology Laboratory (EMBL), Meyerhofstrasse 1, 69117, Heidelberg, Germany.
Anne-Claude Gavin: Molecular Medicine Partnership Unit Heidelberg, EMBL and Heidelberg University, 69120, Heidelberg, Germany.
Motomu Tanaka: Physical Chemistry of Biosystems, Institute of Physical Chemistry, Heidelberg University, Im Neuenheimer Feld 253, 69120, Heidelberg, Germany. tanaka@uni-heidelberg.de.
Anthony D Ho: Department of Medicine V, Heidelberg University, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany. anthony_dick.ho@urz.uni-heidelberg.de.
Inspired by recent proteomic data demonstrating the upregulation of carbon and glycogen metabolism in aging human hematopoietic stem and progenitor cells (HPCs, CD34+ cells), this report addresses whether this is caused by elevated glycolysis of the HPCs on a per cell basis, or by a subpopulation that has become more glycolytic. The average glycogen content in individual CD34+ cells from older subjects (> 50 years) was 3.5 times higher and more heterogeneous compared to younger subjects (< 35 years). Representative glycolytic enzyme activities in HPCs confirmed a significant increase in glycolysis in older subjects. The HPCs from older subjects can be fractionated into three distinct subsets with high, intermediate, and low glucose uptake (GU) capacity, while the subset with a high GU capacity could scarcely be detected in younger subjects. Thus, we conclude that upregulated glycolysis in aging HPCs is caused by the expansion of a more glycolytic HPC subset. Since single-cell RNA analysis has also demonstrated that this subpopulation is linked to myeloid differentiation and increased proliferation, isolation and mechanistic characterization of this subpopulation can be utilized to elucidate specific targets for therapeutic interventions to restore the lineage balance of aging HPCs.
References
Gertz, H. J., Cervos-Navarro, J., Frydl, V. & Schultz, F. Glycogen accumulation of the aging human brain. Mech. Ageing Dev. 31, 25–35 (1985).
[DOI: 10.1016/0047-6374(85)90024-7]
Duran, J. et al. Deleterious effects of neuronal accumulation of glycogen in flies and mice. EMBO Mol. Med. 4, 719–729 (2012).
[DOI: 10.1002/emmm.201200241]
Sinadinos, C. et al. Neuronal glycogen synthesis contributes to physiological aging. Aging Cell 13, 935–945 (2014).
[DOI: 10.1111/acel.12254]
Nielsen, J. et al. Subcellular localization-dependent decrements in skeletal muscle glycogen and mitochondria content following short-term disuse in young and old men. Am. J. Physiol. Endocrinol. Metab. 299, E1053–E1060 (2010).
[DOI: 10.1152/ajpendo.00324.2010]
Seo, Y. H. et al. Enhanced glycogenesis is involved in cellular senescence via GSK3/GS modulation. Aging Cell 7, 894–907 (2008).
[DOI: 10.1111/j.1474-9726.2008.00436.x]
McManus, J. F. A. Histological demonstration of mucin after periodic acid. Nature 158, 202 (1946).
[DOI: 10.1038/158202a0]
Hayhoe, F. G. J., Quaglino, D. & Flemans, R. J. Consecutive use of Romanowsky and periodic-acid-Schiff techniques in the study of blood and bone-marrow cells. Br. J. Haematol. 6, 23–25 (1964).
[DOI: 10.1111/j.1365-2141.1960.tb06212.x]
Laurie, H. C. Duration of remissions in lymphoblastic leukaemia of childhood. Br. Med. J. 2, 95–97 (1968).
[DOI: 10.1136/bmj.2.5597.95]
Gusarov, I. et al. Glycogen controls Caenorhabditis elegans lifespan and resistance to oxidative stress. Nat. Commun. 8, 15868 (2017).
[DOI: 10.1038/ncomms15868]
Hennrich, M. L. et al. Cell-specific proteome analyses of human bone marrow reveal molecular features of age-dependent functional decline. Nat. Commun. 9, 4004 (2018).
[DOI: 10.1038/s41467-018-06353-4]
Warburg, O. H. Ueber den Stoffwechsel der Carcinomzelle. Klin. Wochenschr. 4, 534–536 (1925).
[DOI: 10.1007/BF01726151]
Heiden, M. G. V., Cantley, L. C. & Thompson, C. B. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 324, 1029–1033 (2009).
[DOI: 10.1126/science.1160809]
Geiger, H., de Haan, G. & Florian, M. C. The ageing haematopoietic stem cell compartment. Nat. Rev. Immunol. 13, 376–389 (2013).
[DOI: 10.1038/nri3433]
Yu, G., Wang, L., Han, Y. & He, Q. clusterProfiler: an R package for comparing biological themes among gene clusters. OMICS 16, 284–287 (2012).
[DOI: 10.1089/omi.2011.0118]
Alexa, A. & Rahnenfuhrer, J. topGO: enrichment analysis for gene ontology (R package version 2.40.0). Bioconductor. https://bioconductor.org/packages/topGO/ (2020). Accessed Feb 2019.
Fabregat, A. et al. Reactome pathway analysis: a high-performance in-memory approach. BMC Bioinform. 18, 142 (2017).
[DOI: 10.1186/s12859-017-1559-2]
Humphrey, G., Nesbit, M. & Brunning, R. Prognostic value of the periodic acid-Schiff (PAS) reaction in acute lymphoblastic leukemia. Am. J. Clin. Pathol. 61, 393–397 (1974).
[DOI: 10.1093/ajcp/61.3.393]
Kilcoyne, M., Gerlach, J. Q., Farrell, M. P., Bhavanandan, V. P. & Joshi, L. Periodic acid-Schiff’s reagent assay for carbohydrate in a microtiter plate format. Anal. Biochem. 416, 18–26 (2011).
[DOI: 10.1016/j.ab.2011.05.006]
Tabatabaei Shafiei, M. et al. Detecting glycogen in peripheral blood mononuclear cells with periodic acid Schiff Staining. J. Vis. Exp. 94, e52199 (2014).
Kirschner, K. et al. Proliferation drives aging-related functional decline in a subpopulation of the hematopoietic stem cell compartment. Cell Rep. 19, 1503–1511 (2017).
[DOI: 10.1016/j.celrep.2017.04.074]
Jaiswal, S. et al. Age-related clonal hematopoiesis associated with adverse outcomes. N. Engl. J. Med. 371, 2488–2498 (2014).
[DOI: 10.1056/NEJMoa1408617]
Jaiswal, S. et al. Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. N. Engl. J. Med. 377, 111–121 (2017).
[DOI: 10.1056/NEJMoa1701719]
Young, A. L., Challen, G. A., Birmann, B. M. & Druley, T. E. Clonal haematopoiesis harbouring AML-associated mutations is ubiquitous in healthy adults. Nat. Commun. 7, 12484 (2016).
[DOI: 10.1038/ncomms12484]
Zink, F. et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood 130, 742–752 (2017).
[DOI: 10.1182/blood-2017-02-769869]
Beerman, I. et al. Functionally distinct hematopoietic stem cells modulate hematopoietic lineage potential during aging by a mechanism of clonal expansion. PNAS 107, 5465–5470 (2010).
[DOI: 10.1073/pnas.1000834107]
Grover, A. et al. Single-cell RNA sequencing reveals molecular and functional platelet bias of aged haematopoietic stem cells. Nat. Commun. 7, 11075 (2016).
[DOI: 10.1038/ncomms11075]
Behrens, A., van Deursen, J. M., Rudolf, K. L. & Schumacher, B. Impact of genomic damage and ageing on stem cell function. Nat. Cell Biol. 16, 201–207 (2014).
[DOI: 10.1038/ncb2928]
Smith, B. et al. Addiction to coupling of the Warburg effect with glutamine catabolism in cancer cells. Cell Rep. 17, 821–836 (2016).
[DOI: 10.1016/j.celrep.2016.09.045]
Wagner, W. et al. Aging and replicative senescence have related effects on human stem and progenitor cells. PLoS ONE 4, e5846 (2009).
[DOI: 10.1371/journal.pone.0005846]
Hotchkiss, R. D. A microchemical reaction resulting in the staining of polysaccharide structures in fixed tissue preparations. Arch. Biochem. 16, 131–141 (1948).
[PMID: 18921848]
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
[DOI: 10.1038/nmeth.2019]
Landini, G. How to correct background illumination in brightfield microscopy. ImageJ Documentation. https://imagejdocu.list.lu/howto/working/how_to_correct_background_illumination_in_brightfield_microscopy (2006–2014). Accessed June 2019.
Ruifrok, A. C. & Johnston, D. A. Quantification of histological staining by color deconvolution. Anal. Quant. Cytol. Histol. 23, 291–299 (2001).
[PMID: 11531144]
Smith, A. R. Color gamut transform pairs. SIGGRAPH Comput. Graph. 12, 12–19 (1978).
[DOI: 10.1145/965139.807361]
Barthel, K. U. Color Inspector 3D. ImageJ Plugins. https://imagej.net/plugins/color-inspector.html (2004–2007). Accessed June 2019.
Kaminski, M. M. et al. T cell activation is driven by an ADP-dependent glucokinase linking enhanced glycolysis with mitochondrial reactive oxygen species generation. Cell Rep. 2, 1300–1315 (2012).
[DOI: 10.1016/j.celrep.2012.10.009]
Yoshioka, K. et al. A novel fluorescent derivative of glucose applicable to the assessment of glucose uptake activity of Escherichia coli. Biochim. Biophys. Acta 1289, 5–9 (1996).
[DOI: 10.1016/0304-4165(95)00153-0]
Picelli, S. et al. Smart-seq2 for sensitive full-length transcriptome profiling in single cells. Nat. Methods 10, 1096–1098 (2013).
[DOI: 10.1038/nmeth.2639]
Hennig, B. P. et al. Large-scale low-cost NGS library preparation using a robust Tn5 purification and tagmentation protocol. G3 Genes Genomes Genet. 8, 79–89 (2018).
Patro, R., Duggal, G., Love, M. I., Irizarry, R. A. & Kingsford, C. Salmon provides fast and bias-aware quantification of transcript expression. Nat. Methods 14, 417–419 (2017).
[DOI: 10.1038/nmeth.4197]
Soneson, C., Love, M. I. & Robinson, M. D. Differential analyses for RNA-seq: transcript-level estimates improve gene-level inferences. F1000Res 4, 1521 (2015).
[DOI: 10.12688/f1000research.7563.1]
Lun, A. T., McCarthy, D. J. & Marioni, J. C. A step-by-step workflow for low-level analysis of single-cell RNA-seq data with bioconductor. F1000Res 5, 2122 (2016).
[PMID: 27909575]