Prdm8 regulates pMN progenitor specification for motor neuron and oligodendrocyte fates by modulating the Shh signaling response.

Kayt Scott, Rebecca O'Rourke, Austin Gillen, Bruce Appel
Author Information
  1. Kayt Scott: Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA.
  2. Rebecca O'Rourke: Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA.
  3. Austin Gillen: RNA Bioscience Initiative, University of Colorado School of Medicine, Aurora, Colorado 40045, USA.
  4. Bruce Appel: Department of Pediatrics, Section of Developmental Biology, University of Colorado School of Medicine, Aurora, Colorado 40045, USA bruce.appel@cuanschutz.edu. ORCID

Abstract

Spinal cord pMN progenitors sequentially produce motor neurons and oligodendrocyte precursor cells (OPCs). Some OPCs differentiate rapidly as myelinating oligodendrocytes, whereas others remain into adulthood. How pMN progenitors switch from producing motor neurons to OPCs with distinct fates is poorly understood. pMN progenitors express , which encodes a transcriptional repressor, during motor neuron and OPC formation. To determine whether controls pMN cell fate specification, we used zebrafish as a model system to investigate function. Our analysis revealed that mutant embryos have fewer motor neurons resulting from a premature switch from motor neuron to OPC production. Additionally, mutant larvae have excess oligodendrocytes and a concomitant deficit of OPCs. Notably, pMN cells of mutant embryos have elevated Shh signaling, coincident with the motor neuron to OPC switch. Inhibition of Shh signaling restored the number of motor neurons to normal but did not rescue the proportion of oligodendrocytes. These data suggest that Prdm8 regulates the motor neuron-OPC switch by controlling the level of Shh activity in pMN progenitors, and also regulates the allocation of oligodendrocyte lineage cell fates.This article has an associated 'The people behind the papers' interview.

Keywords

References

  1. Neurochem Int. 2018 Oct;119:178-183 [PMID: 29122585]
  2. Gene Expr Patterns. 2009 Oct;9(7):503-14 [PMID: 19616129]
  3. Elife. 2017 Aug 29;6: [PMID: 28850031]
  4. Neuron. 2000 Feb;25(2):317-29 [PMID: 10719888]
  5. Curr Opin Neurobiol. 2013 Dec;23(6):914-20 [PMID: 23831087]
  6. Nature. 2007 Nov 29;450(7170):717-20 [PMID: 18046410]
  7. Neurosci Bull. 2013 Apr;29(2):129-43 [PMID: 23494530]
  8. Mol Cell Neurosci. 2000 Dec;16(6):740-53 [PMID: 11124894]
  9. Development. 2012 Dec;139(24):4591-600 [PMID: 23136389]
  10. Development. 1995 Aug;121(8):2537-47 [PMID: 7671817]
  11. Nat Neurosci. 2015 May;18(5):683-9 [PMID: 25849987]
  12. Development. 2015 Oct 1;142(19):3416-28 [PMID: 26443638]
  13. Dev Cell. 2013 Apr 29;25(2):182-95 [PMID: 23639443]
  14. Hepatology. 2018 Sep;68(3):994-1009 [PMID: 29572888]
  15. Nat Rev Mol Cell Biol. 2013 Jul;14(7):416-29 [PMID: 23719536]
  16. Genes Dev. 2007 May 15;21(10):1244-57 [PMID: 17504941]
  17. Cold Spring Harb Perspect Biol. 2015 Jun 22;8(1):a020479 [PMID: 26101081]
  18. Neuron. 2001 Sep 13;31(5):791-807 [PMID: 11567617]
  19. Cold Spring Harb Perspect Biol. 2009 Sep;1(3):a002493 [PMID: 20066107]
  20. Development. 2014 Mar;141(6):1392-403 [PMID: 24595292]
  21. PLoS One. 2008;3(12):e3859 [PMID: 19050759]
  22. PLoS Biol. 2010 Jun 01;8(6):e1000382 [PMID: 20532235]
  23. Science. 1992 Jun 12;256(5063):1555-60 [PMID: 1350865]
  24. Development. 1999 Jun;126(11):2419-29 [PMID: 10226001]
  25. Dev Cell. 2006 May;10(5):647-56 [PMID: 16647304]
  26. Trends Neurosci. 2019 Apr;42(4):263-277 [PMID: 30770136]
  27. Development. 2002 Feb;129(3):681-93 [PMID: 11830569]
  28. Neuron. 2001 Sep 13;31(5):773-89 [PMID: 11567616]
  29. Glia. 2019 Nov;67(11):2153-2165 [PMID: 31038810]
  30. Neuron Glia Biol. 2008 May;4(2):71-81 [PMID: 19737431]
  31. Neuron. 2012 Jan 26;73(2):292-303 [PMID: 22284184]
  32. Neural Dev. 2019 Feb 27;14(1):5 [PMID: 30813944]
  33. Cell. 1994 Feb 25;76(4):761-75 [PMID: 8124714]
  34. Development. 2015 Jul 1;142(13):2291-303 [PMID: 25995356]
  35. Genes Dev. 2001 Jan 1;15(1):66-78 [PMID: 11156606]
  36. Glia. 2002 Jul;39(1):47-57 [PMID: 12112375]
  37. Development. 2015 Oct 1;142(19):3286-93 [PMID: 26293298]
  38. Neuron. 2018 Jun 6;98(5):945-962.e8 [PMID: 29779941]
  39. Cold Spring Harb Perspect Biol. 2009 Aug;1(2):a002014 [PMID: 20066087]
  40. Dev Cell. 2015 May 26;33(4):373-87 [PMID: 25936505]
  41. Mol Cell Neurosci. 2003 Oct;24(2):476-88 [PMID: 14572468]
  42. Dev Biol. 2014 Feb 15;386(2):340-57 [PMID: 24370451]
  43. Dev Cell. 2011 Jun 14;20(6):775-87 [PMID: 21664576]
  44. Genes Dev. 2015 Dec 1;29(23):2504-15 [PMID: 26584621]
  45. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  46. Development. 1993 Jun;118(2):563-73 [PMID: 8223279]
  47. Int J Dev Biol. 2002;46(4):597-608 [PMID: 12141448]
  48. J Neurosci. 1998 Jan 1;18(1):237-50 [PMID: 9412504]
  49. J Dev Biol. 2017 Apr 12;5(2): [PMID: 29615562]
  50. Biochem Biophys Res Commun. 2009 Oct 9;388(1):131-6 [PMID: 19646955]
  51. Neuron. 2001 Sep 13;31(5):677-80 [PMID: 11567609]
  52. Cell. 1993 Dec 31;75(7):1417-30 [PMID: 7916661]
  53. J Neurosci. 1991 Aug;11(8):2477-88 [PMID: 1869925]
  54. Cell. 2000 May 12;101(4):435-45 [PMID: 10830170]
  55. Development. 2010 Dec;137(23):4051-60 [PMID: 21062862]
  56. Cell. 2002 Apr 5;109(1):61-73 [PMID: 11955447]
  57. Science. 2010 Nov 5;330(6005):779-82 [PMID: 21051629]
  58. Glia. 2000 Jan 15;29(2):136-42 [PMID: 10625331]
  59. Dev Neurosci. 2017;39(5):361-374 [PMID: 28490013]
  60. Am J Physiol Gastrointest Liver Physiol. 2008 Apr;294(4):G844-9 [PMID: 18239057]
  61. Dev Biol. 2004 Jun 15;270(2):308-21 [PMID: 15183716]
  62. J Neurosci. 2012 Dec 12;32(50):18018-34 [PMID: 23238718]
  63. Neuron. 2000 Feb;25(2):331-43 [PMID: 10719889]
  64. Development. 1995 Jun;121(6):1755-68 [PMID: 7600991]
  65. Development. 1996 Sep;122(9):2835-46 [PMID: 8787757]
  66. Development. 2001 Apr;128(8):1369-79 [PMID: 11262237]
  67. Development. 1989 Feb;105(2):387-400 [PMID: 2680425]
  68. Neural Dev. 2015 Oct 24;10:24 [PMID: 26499851]
  69. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  70. Dev Biol. 2002 Aug 15;248(2):356-68 [PMID: 12167410]
  71. J Neurosci. 2006 May 10;26(19):5037-48 [PMID: 16687495]
  72. J Biol Chem. 2012 Dec 14;287(51):42995-3006 [PMID: 23048031]
  73. Cell. 2009 Jul 10;138(1):172-85 [PMID: 19596243]
  74. Dev Biol. 2011 Aug 15;356(2):496-505 [PMID: 21689645]
  75. Biochem Biophys Res Commun. 2018 Jan 1;495(1):388-394 [PMID: 29113800]
  76. Methods Mol Biol. 2000;137:139-48 [PMID: 10948532]
  77. Proc Natl Acad Sci U S A. 2015 Jun 9;112(23):E3010-9 [PMID: 26023183]
  78. Development. 1992 Jun;115(2):535-51 [PMID: 1425339]

Grants

  1. P30 CA046934/NCI NIH HHS
  2. P30 NS048154/NINDS NIH HHS
  3. R01 NS046668/NINDS NIH HHS

MeSH Term

Animals
Cell Differentiation
DNA-Binding Proteins
Hedgehog Proteins
Histone Methyltransferases
Mice
Mice, Transgenic
Motor Neurons
Neural Stem Cells
Oligodendroglia
Signal Transduction

Chemicals

DNA-Binding Proteins
Hedgehog Proteins
Shh protein, mouse
Histone Methyltransferases
PRDM8 protein, mouse