Trends in conditional survival and predictors of late death in neuroblastoma.

Hannah E Olsen, Kevin Campbell, Rochelle Bagatell, Steven G DuBois
Author Information
  1. Hannah E Olsen: Harvard Medical School, Boston, Massachusetts. ORCID
  2. Kevin Campbell: Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts. ORCID
  3. Rochelle Bagatell: Department of Pediatrics, Children's Hospital of Philadelphia and University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania.
  4. Steven G DuBois: Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, Massachusetts. ORCID

Abstract

PURPOSE: Significant advances in the treatment of neuroblastoma have been made in the past several decades. There are scant data examining how these improvements have changed over time and differentially affected conditional survival among high-risk and non-high-risk patient groups.
METHODS: We conducted a retrospective cohort study using the Surveillance, Epidemiology, and End Results database. We analyzed clinical characteristics and survival outcomes for 4717 neuroblastoma patients. Kaplan-Meier methods were used to estimate overall survival (OS) and conditional overall survival (COS) with estimates compared between groups using log-rank tests.
RESULTS: Five-year OS was 41.46% (95% CI 38.77-44.13) for the high-risk group and 91.13% (95% CI 89.49-92.53) for the non-high-risk group. Both groups saw significant improvements in OS by decade (P < .001). Five-year COS among 1-year survivors was 52.69% (CI 49.54-55.73) for the high-risk group and 96.75% (95% CI 95.57-97.62) for the non-high-risk group. One-year survivors in the high-risk group showed a statistically significant improvement in COS over time. No difference in COS was observed among 5-year high-risk survivors. In the high-risk and non-high-risk groups, 82% and 32% of late deaths were attributable to cancer, respectively. Statistically significant adverse prognostic factors for late death were age ≥ 1 year at diagnosis, metastatic disease, and nonthoracic primary site (P = .001).
CONCLUSIONS: Improvements in COS over time have largely benefited high-risk patients, though they are still at higher risk for late death due to cancer when compared to non-high-risk patients. Age, stage, and primary site, but not treatment decade, influence outcomes among 5-year survivors.

Keywords

References

Blaney SM, Adamson PC, Poplack DG, Pizzo PA, Helman L. Principles and Practice of Pediatric Oncology. Philadelphia, PA: Lippincott, Williams & Wilkins; 2016.
Matthay KK, Villablanca JG, Seeger RC, et al. Treatment of high-risk neuroblastoma with intensive chemotherapy, radiotherapy, autologous bone marrow transplantation, and 13-cis-retinoic acid. Children's Cancer Group. N Engl J Med. 1999;341(16):1165-1173.
Park JR, Kreissman SG, London WB, et al. Effect of tandem autologous stem cell transplant vs single transplant on event-free survival in patients with high-risk neuroblastoma: a randomized clinical trial. JAMA. 2019;322(8):746-755.
Moroz V, Machin D, Faldum A, et al. Changes over three decades in outcome and the prognostic influence of age-at-diagnosis in young patients with neuroblastoma: a report from the International Neuroblastoma Risk Group Project. Eur J Cancer. 2011;47(4):561-571.
Street W. Cancer Facts & Figures 2019. Atlanta, GA: American Cancer Society; 2019.
Laverdiere C, Liu Q, Yasui Y, et al. Long-term outcomes in survivors of neuroblastoma: a report from the Childhood Cancer Survivor Study. J Natl Cancer Inst. 2009;101(16):1131-1140.
Mertens AC, Yong J, Dietz AC, et al. Conditional survival in pediatric malignancies: analysis of data from the Childhood Cancer Survivor Study and the Surveillance, Epidemiology, and End Results Program. Cancer. 2015;121(7):1108-1117.
Ladenstein R, Potschger U, Pearson ADJ, et al. Busulfan and melphalan versus carboplatin, etoposide, and melphalan as high-dose chemotherapy for high-risk neuroblastoma (HR-NBL1/SIOPEN): an international, randomised, multi-arm, open-label, phase 3 trial. Lancet Oncol. 2017;18(4):500-514.
Pinto N, Naranjo A, Hibbitts E, et al. Predictors of differential response to induction therapy in high-risk neuroblastoma: a report from the Children's Oncology Group (COG). Eur J Cancer. 2019;112:66-79.
Cohn SL, Pearson AD, London WB, et al. The International Neuroblastoma Risk Group (INRG) classification system: an INRG Task Force report. J Clin Oncol. 2009;27(2):289-297.
London WB, Castleberry RP, Matthay KK, et al. Evidence for an age cutoff greater than 365 days for neuroblastoma risk group stratification in the Children's Oncology Group. J Clin Oncol. 2005;23(27):6459-6465.
Evans AE, D'Angio GJ, Propert K, Anderson J, Hann HW. Prognostic factor in neuroblastoma. Cancer. 1987;59(11):1853-1859.
Seeger RC, Brodeur GM, Sather H, et al. Association of multiple copies of the N-myc oncogene with rapid progression of neuroblastomas. N Engl J Med. 1985;313(18):1111-1116.
Janoueix-Lerosey I, Schleiermacher G, Michels E, et al. Overall genomic pattern is a predictor of outcome in neuroblastoma. J Clin Oncol. 2009;27(7):1026-1033.
Park HS, Lloyd S, Decker RH, Wilson LD, Yu JB. Overview of the Surveillance, Epidemiology, and End Results database: evolution, data variables, and quality assurance. Curr Probl Cancer. 2012;36(4):183-190.
George RE, London WB, Cohn SL, et al. Hyperdiploidy plus nonamplified MYCN confers a favorable prognosis in children 12 to 18 months old with disseminated neuroblastoma: a Pediatric Oncology Group study. J Clin Oncol. 2005;23(27):6466-6473.
Thompson D, Vo KT, London WB, et al. Identification of patient subgroups with markedly disparate rates of MYCN amplification in neuroblastoma: a report from the International Neuroblastoma Risk Group project. Cancer. 2016;122(6):935-945.
Kaplan EL, Meier P. Nonparametric estimation from incomplete observations. J Am Statist Assoc. 1958;53(282):457-481.
Mosse YP, Deyell RJ, Berthold F, et al. Neuroblastoma in older children, adolescents and young adults: a report from the International Neuroblastoma Risk Group project. Pediatr Blood Cancer. 2014;61(4):627-635.
Ou JY, Spraker-Perlman H, Dietz AC, Smits-Seemann RR, Kaul S, Kirchhoff AC. Conditional survival of pediatric, adolescent, and young adult soft tissue sarcoma and bone tumor patients. Cancer Epidemiol. 2017;50(Pt A):150-157.
Miller BJ, Lynch CF, Buckwalter JA. Conditional survival is greater than overall survival at diagnosis in patients with osteosarcoma and Ewing's sarcoma. Clin Orthop Relat Res. 2013;471(11):3398-3404.
London WB, Castel V, Monclair T, et al. Clinical and biologic features predictive of survival after relapse of neuroblastoma: a report from the International Neuroblastoma Risk Group project. J Clin Oncol. 2011;29(24):3286-3292.
Oeffinger KC, Mertens AC, Sklar CA, et al. Chronic health conditions in adult survivors of childhood cancer. N Engl J Med. 2006;355(15):1572-1582.
Kuo TM, Mobley LR. How generalizable are the SEER registries to the cancer populations of the USA. Cancer Causes Control. 2016;27(9):1117-1126.

Grants

  1. T32 CA136432/NCI NIH HHS
  2. T32 CA136432-08/NIH HHS

MeSH Term

Cancer Survivors
Child
Child, Preschool
Female
Follow-Up Studies
Humans
Infant
Male
Mortality
Neoplasm Recurrence, Local
Neuroblastoma
Prognosis
Retrospective Studies
Survival Rate