Cell type-specific immune dysregulation in severely ill COVID-19 patients.

Changfu Yao, Stephanie A Bora, Tanyalak Parimon, Tanzira Zaman, Oren A Friedman, Joseph A Palatinus, Nirmala S Surapaneni, Yuri P Matusov, Giuliana Cerro Chiang, Alexander G Kassar, Nayan Patel, Chelsi Er Green, Adam W Aziz, Harshpreet Suri, Jo Suda, Andres A Lopez, Gislaine A Martins, Barry R Stripp, Sina A Gharib, Helen S Goodridge, Peter Chen
Author Information
  1. Changfu Yao: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  2. Stephanie A Bora: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  3. Tanyalak Parimon: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  4. Tanzira Zaman: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  5. Oren A Friedman: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  6. Joseph A Palatinus: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  7. Nirmala S Surapaneni: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  8. Yuri P Matusov: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  9. Giuliana Cerro Chiang: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  10. Alexander G Kassar: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  11. Nayan Patel: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  12. Chelsi Er Green: Division of Pulmonary and Critical Care Medicine, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  13. Adam W Aziz: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  14. Harshpreet Suri: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  15. Jo Suda: Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  16. Andres A Lopez: Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  17. Gislaine A Martins: Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  18. Barry R Stripp: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  19. Sina A Gharib: Computational Medicine Core at Center for Lung Biology, Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington, Seattle, WA, USA.
  20. Helen S Goodridge: Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California, USA.
  21. Peter Chen: Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.

Abstract

Coronavirus disease 2019 (COVID-19) has quickly become the most serious pandemic since the 1918 flu pandemic. In extreme situations, patients develop a dysregulated inflammatory lung injury called acute respiratory distress syndrome (ARDS) that causes progressive respiratory failure requiring mechanical ventilatory support. Recent studies have demonstrated immunologic dysfunction in severely ill COVID-19 patients. To further delineate the dysregulated immune response driving more severe clinical course from SARS-CoV-2 infection, we used single-cell RNA sequencing (scRNAseq) to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) from hospitalized COVID-19 patients having mild disease (n = 5), developing ARDS (n = 6), and recovering from ARDS (n = 6). Our data demonstrated an overwhelming inflammatory response with select immunodeficiencies within various immune populations in ARDS patients. Specifically, their monocytes had defects in antigen presentation and deficiencies in interferon responsiveness that contrasted the higher interferon signals in lymphocytes. Furthermore, cytotoxic activity was suppressed in both NK and CD8 lymphocytes whereas B cell activation was deficient, which is consistent with the delayed viral clearance in severely ill COVID-19 patients. Finally, we identified altered signaling pathways in the severe group that suggests immunosenescence and immunometabolic changes could be contributing to the dysfunctional immune response. Our study demonstrates that COVID-19 patients with ARDS have an immunologically distinct response when compared to those with a more innocuous disease course and show a state of immune imbalance in which deficiencies in both the innate and adaptive immune response may be contributing to a more severe disease course in COVID-19.

References

  1. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  2. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  3. Arthritis Rheumatol. 2020 Sep;72(9):1581-1582 [PMID: 32458534]
  4. Front Immunol. 2018 Aug 13;9:1869 [PMID: 30150991]
  5. Int J Mol Sci. 2016 May 05;17(5): [PMID: 27164085]
  6. Immunol Rev. 2012 Sep;249(1):5-13 [PMID: 22889211]
  7. JAMA Intern Med. 2020 Oct 1;180(10):1345-1355 [PMID: 32667669]
  8. Clin Diagn Lab Immunol. 2004 Jan;11(1):161-7 [PMID: 14715564]
  9. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  10. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  11. Nat Rev Immunol. 2020 Jul;20(7):397-398 [PMID: 32457522]
  12. Nucleic Acids Res. 2019 Jul 2;47(W1):W199-W205 [PMID: 31114916]
  13. mBio. 2014 Dec 16;5(6): [PMID: 25516616]
  14. Emerg Microbes Infect. 2020 Dec;9(1):1096-1101 [PMID: 32476607]
  15. J Allergy Clin Immunol. 2020 Jul;146(1):119-127.e4 [PMID: 32360286]
  16. Nat Commun. 2020 Jul 6;11(1):3434 [PMID: 32632085]
  17. N Engl J Med. 2012 Nov 8;367(19):1814-20 [PMID: 23075143]
  18. PLoS One. 2020 Jul 23;15(7):e0236240 [PMID: 32702044]
  19. Biochem Biophys Res Commun. 2003 Sep 5;308(4):840-6 [PMID: 12927795]
  20. J Clin Invest. 2012 Aug;122(8):2731-40 [PMID: 22850883]
  21. J Immunol. 2014 Sep 15;193(6):3080-9 [PMID: 25135833]
  22. Nat Immunol. 2015 Jan;16(1):18-26 [PMID: 25521681]
  23. Emerg Microbes Infect. 2020 Dec;9(1):761-770 [PMID: 32228226]
  24. J Immunol. 2017 May 15;198(10):3846-3856 [PMID: 28416599]
  25. N Engl J Med. 2003 May 15;348(20):1967-76 [PMID: 12690091]
  26. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  27. J Virol. 2017 Mar 29;91(8): [PMID: 28148787]
  28. Proc Natl Acad Sci U S A. 2000 Feb 15;97(4):1713-8 [PMID: 10677523]
  29. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  30. Gigascience. 2020 Dec 26;9(12): [PMID: 33367645]
  31. Lancet Rheumatol. 2020 Aug;2(8):e474-e484 [PMID: 32835257]
  32. Front Immunol. 2018 Jan 10;8:1960 [PMID: 29375577]
  33. J Virol. 2015 Oct 21;90(1):5-8 [PMID: 26491165]
  34. J Biol Chem. 2009 Jun 12;284(24):16202-16209 [PMID: 19380580]
  35. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  36. J Immunol. 2005 Apr 15;174(8):5110-8 [PMID: 15814742]
  37. Trends Cell Biol. 2014 Aug;24(8):464-71 [PMID: 24786309]
  38. Nat Commun. 2020 Jul 8;11(1):3410 [PMID: 32641700]
  39. Allergy. 2020 Nov;75(11):2829-2845 [PMID: 32496587]
  40. Nat Rev Immunol. 2020 Jun;20(6):355-362 [PMID: 32376901]
  41. Immunity. 2017 Sep 19;47(3):406-420 [PMID: 28930657]
  42. Clin Immunol. 2020 Jun;215:108448 [PMID: 32353634]
  43. Ann Transl Med. 2019 Oct;7(19):504 [PMID: 31728357]
  44. J Immunol. 2010 May 15;184(10):5835-41 [PMID: 20385880]
  45. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  46. J Mol Biol. 2014 Mar 20;426(6):1246-64 [PMID: 24316048]
  47. Nat Rev Immunol. 2010 Jun;10(6):387-402 [PMID: 20467426]
  48. J Infect. 2020 Jun;80(6):607-613 [PMID: 32283152]
  49. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  50. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  51. Virology. 2015 May;479-480:180-93 [PMID: 25620767]
  52. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  53. Nat Rev Immunol. 2017 Jun;17(6):349-362 [PMID: 28436425]
  54. PLoS One. 2016 May 04;11(5):e0154690 [PMID: 27144640]
  55. Front Med. 2020 Apr;14(2):185-192 [PMID: 32170560]
  56. EBioMedicine. 2017 Oct;24:231-236 [PMID: 28958655]
  57. Cell Discov. 2020 May 4;6:31 [PMID: 32377375]
  58. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  59. Nature. 1995 Nov 16;378(6554):303-6 [PMID: 7477353]
  60. Clin Infect Dis. 2020 Dec 15;71(12):3168-3173 [PMID: 32575124]
  61. J Transl Med. 2018 Jul 17;16(1):198 [PMID: 30016977]
  62. Front Cell Infect Microbiol. 2019 Apr 18;9:95 [PMID: 31058096]
  63. Immunol Rev. 2000 Aug;176:154-70 [PMID: 11043775]
  64. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  65. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  66. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  67. BMJ. 2020 Apr 21;369:m1443 [PMID: 32317267]
  68. J Infect Dis. 2020 Aug 17;222(6):910-918 [PMID: 32614392]
  69. J Allergy Clin Immunol Pract. 2020 Sep;8(8):2585-2591.e1 [PMID: 32574840]
  70. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  71. Sci Rep. 2015 Dec 03;5:17554 [PMID: 26631542]
  72. Cancer Immunol Immunother. 2016 Feb;65(2):193-204 [PMID: 26759006]
  73. J Immunol. 2005 Aug 15;175(4):2570-8 [PMID: 16081831]
  74. J Immunol. 2015 Nov 1;195(9):4319-30 [PMID: 26401005]

Grants

  1. R01 AI134987/NIAID NIH HHS
  2. R01 AI137111/NIAID NIH HHS
  3. R01 HL137076/NHLBI NIH HHS
  4. T32 HL134637/NHLBI NIH HHS

Word Cloud

Similar Articles

Cited By