Cosmc controls B cell homing.

Junwei Zeng, Mahmoud Eljalby, Rajindra P Aryal, Sylvain Lehoux, Kathrin Stavenhagen, Matthew R Kudelka, Yingchun Wang, Jianmei Wang, Tongzhong Ju, Ulrich H von Andrian, Richard D Cummings
Author Information
  1. Junwei Zeng: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
  2. Mahmoud Eljalby: Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA. ORCID
  3. Rajindra P Aryal: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. ORCID
  4. Sylvain Lehoux: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
  5. Kathrin Stavenhagen: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
  6. Matthew R Kudelka: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
  7. Yingchun Wang: Department of Biochemistry, Emory University, Atlanta, GA, USA.
  8. Jianmei Wang: Department of Biochemistry, Emory University, Atlanta, GA, USA.
  9. Tongzhong Ju: Department of Biochemistry, Emory University, Atlanta, GA, USA.
  10. Ulrich H von Andrian: Department of Microbiology & Immunobiology, Harvard Medical School, Boston, MA, USA. ORCID
  11. Richard D Cummings: Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA. rcummin1@bidmc.harvard.edu. ORCID

Abstract

The molecular mechanisms regulating lymphocyte homing into lymph nodes are only partly understood. Here, we report that B cell-specific deletion of the X-linked gene, Cosmc, and the consequent decrease of protein O-glycosylation, induces developmental blocks of mouse B cells. After transfer into wild-type recipient, Cosmc-null B cells fail to home to lymph nodes as well as non-lymphoid organs. Enzymatic desialylation of wild-type B cells blocks their migration into lymph nodes, indicating a requirement of sialylated O-glycans for proper trafficking. Mechanistically, Cosmc-deficient B cells have normal rolling and firm arrest on high endothelium venules (HEV), thereby attributing their inefficient trafficking to alterations in the subsequent transendothelial migration step. Finally, Cosmc-null B cells have defective chemokine signaling responses. Our results thus demonstrate that Cosmc and its effects on O-glycosylation are important for controlling B cell homing.

References

Butcher, E. C. & Picker, L. J. Lymphocyte homing and homeostasis. Science272, 60–66 (1996). [PMID: 8600538]
Girard, J. P., Moussion, C. & Forster, R. HEVs, lymphatics and homeostatic immune cell trafficking in lymph nodes. Nat. Rev. Immunol.12, 762–773 (2012). [PMID: 23018291]
Springer, T. A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm. Cell76, 301–314 (1994). [PMID: 7507411]
Zarbock, A., Ley, K., McEver, R. P. & Hidalgo, A. Leukocyte ligands for endothelial selectins: specialized glycoconjugates that mediate rolling and signaling under flow. Blood118, 6743–6751 (2011). [PMID: 22021370]
Sperandio, M., Gleissner, C. A. & Ley, K. Glycosylation in immune cell trafficking. Immunological Rev.230, 97–113 (2009).
Ivetic, A., Hoskins Green, H. L. & Hart, S. J. L-selectin: a major regulator of leukocyte adhesion, migration and signaling. Front Immunol.10, 1068 (2019). [PMID: 31139190]
von Andrian, U. H. & Mempel, T. R. Homing and cellular traffic in lymph nodes. Nat. Rev. Immunol.3, 867–878 (2003).
Gesner, B. M. & Ginsburg, V. Effect of glycosidases on the fate of transfused lymphocytes. Proc. Natl Acad. Sci. USA52, 750–755 (1964). [PMID: 14212553]
Woodruff, J. J. & Gesner, B. M. The effect of neuraminidase on the fate of transfused lymphocytes. J. Exp. Med.129, 551–567 (1969). [PMID: 5766942]
McEver, R. P. Selectins: initiators of leucocyte adhesion and signalling at the vascular wall. Cardiovasc Res. 107, 331–339 (2015). [PMID: 25994174]
Stowell, S. R., Ju, T. & Cummings, R. D. Protein glycosylation in cancer. Annu. Rev. Pathol.10, 473–510 (2015). [PMID: 25621663]
Gauguet, J. M., Rosen, S. D., Marth, J. D. & von Andrian, U. H. Core 2 branching beta1,6-N-acetylglucosaminyltransferase and high endothelial cell N-acetylglucosamine-6-sulfotransferase exert differential control over B- and T-lymphocyte homing to peripheral lymph nodes. Blood104, 4104–4112 (2004). [PMID: 15319280]
Tenno, M. et al. Initiation of protein O glycosylation by the polypeptide GalNAcT-1 in vascular biology and humoral immunity. Mol. Cell. Biol.27, 8783–8796 (2007). [PMID: 17923703]
Cutler, C. E. et al. Cosmc is required for T cell persistence in the periphery. Glycobiology29, 776–778 (2019).
Ju, T., Brewer, K., D’Souza, A., Cummings, R. D. & Canfield, W. M. Cloning and expression of human core 1 beta1,3-galactosyltransferase. J. Biol. Chem.277, 178–186 (2002). [PMID: 11677243]
Ju, T., Cummings, R. D. & Canfield, W. M. Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J. Biol. Chem.277, 169–177 (2002). [PMID: 11673471]
Ju, T. & Cummings, R. D. A unique molecular chaperone Cosmc required for activity of the mammalian core 1 beta 3-galactosyltransferase. Proc. Natl Acad. Sci. USA99, 16613–16618 (2002). [PMID: 12464682]
Wang, Y. et al. Cosmc is an essential chaperone for correct protein O-glycosylation. Proc. Natl Acad. Sci. USA107, 9228–9233 (2010). [PMID: 20439703]
Xia, L. & McEver, R. P. Targeted disruption of the gene encoding core 1 beta1-3-galactosyltransferase (T-synthase) causes embryonic lethality and defective angiogenesis in mice. Methods Enzymol.416, 314–331 (2006). [PMID: 17113876]
Wang, Y. et al. Platelet biogenesis and functions require correct protein O-glycosylation. Proc. Natl Acad. Sci. USA109, 16143–16148 (2012). [PMID: 22988088]
Hobeika, E. et al. Testing gene function early in the B cell lineage in mb1-cre mice. Proc. Natl Acad. Sci. USA103, 13789–13794 (2006). [PMID: 16940357]
LeBien, T. W. & Tedder, T. F. B lymphocytes: how they develop and function. Blood112, 1570–1580 (2008). [PMID: 18725575]
Forster, R. et al. A putative chemokine receptor, BLR1, directs B cell migration to defined lymphoid organs and specific anatomic compartments of the spleen. Cell87, 1037–1047 (1996). [PMID: 8978608]
Kim, H. et al. O-glycosylation in hinge region of mouse immunoglobulin G2b. J. Biol. Chem.269, 12345–12350 (1994). [PMID: 7512967]
Comelli, E. M. et al. Activation of murine CD4+ and CD8+ T lymphocytes leads to dramatic remodeling of N-linked glycans. J. Immunol.177, 2431–2440 (2006). [PMID: 16888005]
Arbones, M. L. et al. Lymphocyte homing and leukocyte rolling and migration are impaired in L-selectin-deficient mice. Immunity1, 247–260 (1994). [PMID: 7534203]
Tedder, T. F., Steeber, D. A. & Pizcueta, P. L-selectin-deficient mice have impaired leukocyte recruitment into inflammatory sites. J. Exp. Med.181, 2259–2264 (1995). [PMID: 7539045]
Berlin, C. et al. alpha 4 integrins mediate lymphocyte attachment and rolling under physiologic flow. Cell80, 413–422 (1995). [PMID: 7532110]
Wagner, N. et al. Critical role for beta7 integrins in formation of the gut-associated lymphoid tissue. Nature382, 366–370 (1996). [PMID: 8684468]
Okada, T. et al. Chemokine requirements for B cell entry to lymph nodes and Peyer’s patches. J. Exp. Med.196, 65–75 (2002). [PMID: 12093871]
Ebisuno, Y. et al. Cutting edge: the B cell chemokine CXC chemokine ligand 13/B lymphocyte chemoattractant is expressed in the high endothelial venules of lymph nodes and Peyer’s patches and affects B cell trafficking across high endothelial venules. J. Immunol.171, 1642–1646 (2003). [PMID: 12902460]
Warnock, R. A. et al. The role of chemokines in the microenvironmental control of T versus B cell arrest in Peyer’s patch high endothelial venules. J. Exp. Med.191, 77–88 (2000). [PMID: 10620606]
Hauser, M. A. et al. Distinct CCR7 glycosylation pattern shapes receptor signaling and endocytosis to modulate chemotactic responses. J. Leukoc. Biol.99, 993–1007 (2016). [PMID: 26819318]
Yang, W., Ao, M., Hu, Y., Li, Q. K. & Zhang, H. Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol. Syst. Biol.14, e8486 (2018). [PMID: 30459171]
Bannert, N. et al. Sialylated O-glycans and sulfated tyrosines in the NH2-terminal domain of CC chemokine receptor 5 contribute to high affinity binding of chemokines. J. Exp. Med.194, 1661–1673 (2001). [PMID: 11733580]
Li, Y. et al. Sialylation on O-glycans protects platelets from clearance by liver Kupffer cells. Proc. Natl Acad. Sci. USA114, 8360–8365 (2017). [PMID: 28716912]
Grewal, P. K. et al. The Ashwell receptor mitigates the lethal coagulopathy of sepsis. Nat. Med.14, 648–655 (2008). [PMID: 18488037]
Tang, M. L., Steeber, D. A., Zhang, X. Q. & Tedder, T. F. Intrinsic differences in L-selectin expression levels affect T and B lymphocyte subset-specific recirculation pathways. J. Immunol.160, 5113–5121 (1998). [PMID: 9590263]
Forster, R. et al. CCR7 coordinates the primary immune response by establishing functional microenvironments in secondary lymphoid organs. Cell99, 23–33 (1999). [PMID: 10520991]
Stein, J. V. et al. The CC chemokine thymus-derived chemotactic agent 4 (TCA-4, secondary lymphoid tissue chemokine, 6Ckine, exodus-2) triggers lymphocyte function-associated antigen 1-mediated arrest of rolling T lymphocytes in peripheral lymph node high endothelial venules. J. Exp. Med.191, 61–76 (2000). [PMID: 10620605]
Baekkevold, E. S. et al. The CCR7 ligand elc (CCL19) is transcytosed in high endothelial venules and mediates T cell recruitment. J. Exp. Med.193, 1105–1112 (2001). [PMID: 11342595]
Scimone, M. L. et al. CXCL12 mediates CCR7-independent homing of central memory cells, but not naive T cells, in peripheral lymph nodes. J. Exp. Med.199, 1113–1120 (2004). [PMID: 15096537]
Salmi, M., Tohka, S., Berg, E. L., Butcher, E. C. & Jalkanen, S. Vascular adhesion protein 1 (VAP-1) mediates lymphocyte subtype-specific, selectin-independent recognition of vascular endothelium in human lymph nodes. J. Exp. Med.186, 589–600 (1997). [PMID: 9254657]
Anderson, K. G. et al. Intravascular staining for discrimination of vascular and tissue leukocytes. Nat. Protoc.9, 209–222 (2014). [PMID: 24385150]
Hobbs, S. J. & Nolz, J. C. Regulation of T cell trafficking by enzymatic synthesis of O-Glycans. Front. Immunol.8, 600 (2017). [PMID: 28596771]
Yago, T. et al. Core 1-derived O-glycans are essential E-selectin ligands on neutrophils. Proc. Natl Acad. Sci. USA107, 9204–9209 (2010). [PMID: 20439727]
Osborn, J. F. et al. Enzymatic synthesis of core 2 O-glycans governs the tissue-trafficking potential of memory CD8(+) T cells. Sci. Immunol.2, eaan6049 (2017).
Rosen, S. D. Ligands for L-selectin: homing, inflammation, and beyond. Annu. Rev. Immunol.22, 129–156 (2004). [PMID: 15032576]
Hamann, A., Andrew, D. P., Jablonski-Westrich, D., Holzmann, B. & Butcher, E. C. Role of alpha 4-integrins in lymphocyte homing to mucosal tissues in vivo. J. Immunol.152, 3282–3293 (1994). [PMID: 7511642]
Berlin, C. et al. Alpha 4 beta 7 integrin mediates lymphocyte binding to the mucosal vascular addressin MAdCAM-1. Cell74, 185–195 (1993). [PMID: 7687523]
Mehta, A. Y., Heimburg-Molinaro, J., Cummings, R. D. & Goth, C. K. Emerging patterns of tyrosine sulfation and O-glycosylation cross-talk and co-localization. Curr. Opin. Struct. Biol.62, 102–111 (2020). [PMID: 31927217]
Su, M. L. et al. Inhibition of chemokine (C-C motif) receptor 7 sialylation suppresses CCL19-stimulated proliferation, invasion and anti-anoikis. PLoS ONE9, e98823 (2014). [PMID: 24915301]
Schenkel, A. R., Mamdouh, Z., Chen, X., Liebman, R. M. & Muller, W. A. CD99 plays a major role in the migration of monocytes through endothelial junctions. Nat. Immunol.3, 143–150 (2002). [PMID: 11812991]
Muller, W. A. Mechanisms of leukocyte transendothelial migration. Annu. Rev. Pathol.6, 323–344 (2011). [PMID: 21073340]
Yan, S. L. S., Hwang, I. Y., Kamenyeva, O. & Kehrl, J. H. In nivo F-Actin filament organization during lymphocyte transendothelial and interstitial migration revealed by intravital microscopy. iScience16, 283–297 (2019). [PMID: 31203185]
Crotty, S. T follicular helper cell differentiation, function, and roles in disease. Immunity41, 529–542 (2014). [PMID: 25367570]
Matsumoto, Y. et al. Identification of Tn antigen O-GalNAc-expressing glycoproteins in human carcinomas using novel anti-Tn recombinant antibodies. Glycobiology30, 282–300 (2020). [PMID: 31742337]
Babu, P. et al. Structural characterisation of neutrophil glycans by ultra sensitive mass spectrometric glycomics methodology. Glycoconj. J.26, 975–986 (2009). [PMID: 18587645]
Strohalm, M., Kavan, D., Novak, P., Volny, M. & Havlicek, V. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Anal. Chem.82, 4648–4651 (2010). [PMID: 20465224]
Plomp, R. et al. Site-specific N-glycosylation analysis of human immunoglobulin e. J. Proteome Res.13, 536–546 (2014). [PMID: 24308486]
de Haan, N. et al. The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front. Immunol.8, 608 (2017). [PMID: 28620376]
Jansen, B. C. et al. LaCyTools: a targeted liquid chromatography-mass spectrometry data processing package for relative quantitation of glycopeptides. J. Proteome Res.15, 2198–2210 (2016). [PMID: 27267458]
Weninger, W., Crowley, M. A., Manjunath, N. & von Andrian, U. H. Migratory properties of naive, effector, and memory CD8(+) T cells. J. Exp. Med.194, 953–966 (2001). [PMID: 11581317]
von Andrian, U. H. Intravital microscopy of the peripheral lymph node microcirculation in mice. Microcirculation3, 287–300 (1996).
Warnock, R. A., Askari, S., Butcher, E. C. & von Andrian, U. H. Molecular mechanisms of lymphocyte homing to peripheral lymph nodes. J. Exp. Med.187, 205–216 (1998). [PMID: 9432978]
M’Rini, C. et al. A novel endothelial L-selectin ligand activity in lymph node medulla that is regulated by alpha(1,3)-fucosyltransferase-IV. J. Exp. Med.198, 1301–1312 (2003). [PMID: 14597733]

Grants

  1. T32 GM008169/NIGMS NIH HHS
  2. U01 CA168930/NCI NIH HHS

MeSH Term

Animals
B-Lymphocytes
Cell Movement
Female
Glycosylation
Humans
Immunity, Humoral
Lymph Nodes
Male
Mice
Mice, Inbred C57BL
Mice, Knockout
Molecular Chaperones
Polysaccharides
Transcriptome
Venules

Chemicals

Cosmc protein, mouse
Molecular Chaperones
Polysaccharides