Human mAbs Broadly Protect against Arthritogenic Alphaviruses by Recognizing Conserved Elements of the Mxra8 Receptor-Binding Site.

Laura A Powell, Andrew Miller, Julie M Fox, Nurgun Kose, Thomas Klose, Arthur S Kim, Robin Bombardi, Rashika N Tennekoon, A Dharshan de Silva, Robert H Carnahan, Michael S Diamond, Michael G Rossmann, Richard J Kuhn, James E Crowe
Author Information
  1. Laura A Powell: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  2. Andrew Miller: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
  3. Julie M Fox: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA.
  4. Nurgun Kose: Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA.
  5. Thomas Klose: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
  6. Arthur S Kim: Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA.
  7. Robin Bombardi: Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA.
  8. Rashika N Tennekoon: Genetech Research Institute, Colombo, Sri Lanka; Department of Paraclinical Sciences, Faculty of Medicine, Kotelawala Defence University, Colombo, Sri Lanka.
  9. A Dharshan de Silva: Genetech Research Institute, Colombo, Sri Lanka; Department of Paraclinical Sciences, Faculty of Medicine, Kotelawala Defence University, Colombo, Sri Lanka.
  10. Robert H Carnahan: Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
  11. Michael S Diamond: Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, Saint Louis, MO 63110, USA; Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO 63110, USA; Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, Saint Louis, MO 63110, USA.
  12. Michael G Rossmann: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA.
  13. Richard J Kuhn: Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA; Markey Center for Structural Biology and Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, IN 47907, USA.
  14. James E Crowe: Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Vaccine Center, Department of Pediatrics, Nashville, TN 37232, USA; Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232, USA. Electronic address: james.crowe@vumc.org.

Abstract

Mosquito inoculation of humans with arthritogenic alphaviruses results in a febrile syndrome characterized by debilitating musculoskeletal pain and arthritis. Despite an expanding global disease burden, no approved therapies or licensed vaccines exist. Here, we describe human monoclonal antibodies (mAbs) that bind to and neutralize multiple distantly related alphaviruses. These mAbs compete for an antigenic site and prevent attachment to the recently discovered Mxra8 alphavirus receptor. Three cryoelectron microscopy structures of Fab in complex with Ross River (RRV), Mayaro, or chikungunya viruses reveal a conserved footprint of the broadly neutralizing mAb RRV-12 in a region of the E2 glycoprotein B domain. This mAb neutralizes virus in vitro by preventing virus entry and spread and is protective in vivo in mouse models. Thus, the RRV-12 mAb and its defined epitope have potential as a therapeutic agent or target of vaccine design against multiple emerging arthritogenic alphavirus infections.

Keywords

References

J Comput Chem. 2004 Oct;25(13):1605-12 [PMID: 15264254]
Viruses. 2018 Feb 22;10(2): [PMID: 29470397]
Nat Protoc. 2010 Apr;5(4):725-38 [PMID: 20360767]
J Virol. 2012 Mar;86(6):3100-11 [PMID: 22238319]
Nature. 2007 Sep 6;449(7158):101-4 [PMID: 17805298]
Front Immunol. 2019 Jun 07;10:1296 [PMID: 31231397]
J Interferon Cytokine Res. 2006 Nov;26(11):804-19 [PMID: 17115899]
PLoS Pathog. 2017 Dec 15;13(12):e1006748 [PMID: 29244871]
PLoS Pathog. 2016 Dec 15;12(12):e1006061 [PMID: 27977778]
Trans R Soc Trop Med Hyg. 1981;75(3):426-31 [PMID: 7324110]
Am J Pathol. 2011 Jan;178(1):32-40 [PMID: 21224040]
J Virol. 2014 Oct;88(20):11644-7 [PMID: 25078691]
PLoS Negl Trop Dis. 2015 Oct 16;9(10):e0004163 [PMID: 26473963]
Nature. 2018 May;557(7706):570-574 [PMID: 29769725]
J Struct Biol. 2015 Nov;192(2):216-21 [PMID: 26278980]
J Struct Biol. 2007 May;158(2):182-7 [PMID: 17116403]
Mol Immunol. 2015 Feb;63(2):456-63 [PMID: 25451975]
Cell. 2015 Nov 19;163(5):1095-1107 [PMID: 26553503]
BMC Bioinformatics. 2008 Jan 23;9:40 [PMID: 18215316]
PLoS One. 2017 Nov 14;12(11):e0187897 [PMID: 29136650]
Cell Rep. 2015 Dec 22;13(11):2553-2564 [PMID: 26686638]
J Struct Biol. 2001 Dec;136(3):190-200 [PMID: 12051899]
Methods Mol Biol. 2014;1117:401-43 [PMID: 24357374]
J Virol. 1996 Mar;70(3):2069-73 [PMID: 8627739]
Nature. 2010 Dec 2;468(7324):709-12 [PMID: 21124458]
Emerg Microbes Infect. 2018 Sep 26;7(1):163 [PMID: 30254258]
Cell. 2019 Jun 13;177(7):1714-1724.e12 [PMID: 31080063]
Clin Microbiol Rev. 2001 Oct;14(4):909-32, table of contents [PMID: 11585790]
Nature. 2016 Dec 15;540(7633):443-447 [PMID: 27819683]
J Gen Virol. 2000 May;81(Pt 5):1353-60 [PMID: 10769079]
J Virol. 2015 Feb;89(4):2157-69 [PMID: 25473057]
J Exp Med. 2019 Oct 7;216(10):2282-2301 [PMID: 31337735]
J Struct Biol. 2004 Jan-Feb;145(1-2):91-9 [PMID: 15065677]
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501 [PMID: 20383002]
Pathog Glob Health. 2017 Sep;111(6):271-275 [PMID: 28829253]
Sci Immunol. 2019 May 17;4(35): [PMID: 31101672]
Future Microbiol. 2009 Sep;4(7):837-56 [PMID: 19722838]
J Infect Dis. 2016 Dec 15;214(suppl 5):S436-S440 [PMID: 27920169]
PLoS Pathog. 2011 Dec;7(12):e1002390 [PMID: 22144891]
Vet Microbiol. 1988 Aug;17(4):367-73 [PMID: 2847399]
New Microbiol. 2013 Jul;36(3):211-27 [PMID: 23912863]
J Struct Biol. 2005 Jul;151(1):41-60 [PMID: 15890530]
Microorganisms. 2019 May 14;7(5): [PMID: 31091828]
Emerg Infect Dis. 2016 Nov;22(11):2000-2002 [PMID: 27767924]
Cell. 2019 May 16;177(5):1136-1152.e18 [PMID: 31100268]
Nat Methods. 2017 Apr;14(4):331-332 [PMID: 28250466]
Cell. 2019 Jun 13;177(7):1725-1737.e16 [PMID: 31080061]
Cell Host Microbe. 2018 Sep 12;24(3):417-428.e5 [PMID: 30146390]
Microbiol Spectr. 2015 Feb;3(1):AID-0027-2014 [PMID: 26104564]
Acta Crystallogr D Biol Crystallogr. 2009 May;65(Pt 5):510-2 [PMID: 19390156]
Viruses. 2019 Mar 28;11(4): [PMID: 30925717]
Cell Host Microbe. 2015 Jul 8;18(1):86-95 [PMID: 26159721]
Structure. 2006 Jan;14(1):75-86 [PMID: 16407067]
EMBO J. 2011 Aug 09;30(18):3854-63 [PMID: 21829169]
PLoS Pathog. 2013;9(4):e1003312 [PMID: 23637602]
J Struct Biol. 2012 Dec;180(3):519-30 [PMID: 23000701]

Grants

  1. R01 AI095366/NIAID NIH HHS
  2. HHSN272201400018C/NIAID NIH HHS
  3. R01 AI114816/NIAID NIH HHS
  4. R01 AI143673/NIAID NIH HHS
  5. U19 AI142790/NIAID NIH HHS

MeSH Term

Alphavirus
Alphavirus Infections
Animals
Antibodies, Monoclonal
Antibodies, Neutralizing
Antibodies, Viral
Arthritis
Binding Sites
Chikungunya virus
Chlorocebus aethiops
Cross Reactions
Cryoelectron Microscopy
Epitopes
Female
Humans
Immunoglobulins
Male
Membrane Proteins
Mice
Mice, Inbred C57BL
Middle Aged
Receptors, Virus
Ross River virus
Vero Cells
Virus Internalization

Chemicals

Antibodies, Monoclonal
Antibodies, Neutralizing
Antibodies, Viral
Epitopes
Immunoglobulins
Membrane Proteins
Mxra8 protein, mouse
Receptors, Virus
alphavirus receptor

Word Cloud

Similar Articles

Cited By