Emerging Technologies and Materials for High-Resolution 3D Printing of Microfluidic Chips.

Frederik Kotz, Dorothea Helmer, Bastian E Rapp
Author Information
  1. Frederik Kotz: Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany. frederik.kotz@imtek.de.
  2. Dorothea Helmer: Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany.
  3. Bastian E Rapp: Laboratory of Process Technology, NeptunLab, Department of Microsystems Engineering (IMTEK), University Freiburg, Freiburg, Germany.

Abstract

In recent years, 3D printing has had a huge impact on the field of biotechnology: from 3D-printed pharmaceuticals to tissue engineering and microfluidic chips. Microfluidic chips are of particular interest and importance for the field of biotechnology, since they allow for the analysis and screening of a wide range of biomolecules - including single cells, proteins, and DNA. The fabrication of microfluidic chips has historically been time-consuming, however, and is typically limited to 2.5 dimensional structures and a restricted palette of well-known materials. Due to the high surface-to-volume ratios in microfluidic chips, the nature of the chip material is of paramount importance to the final system behavior. With the emergence of 3D printing, however, a wide range of microfluidic systems are now being printed for the first time in a manner that facilitates flexibility while minimizing time and cost. Nevertheless, resolution and material choices still remain challenges and in the focus of current research, aiming for (1) 3D printing with high resolutions in the range of tens of micrometers and (2) a wider range of available materials for these high-resolution prints. The first part of this chapter highlights recent emerging technologies in the field of high-resolution printing via stereolithography (SL) and 2-photon polymerization (2PP) and seeks to identify particularly interesting emerging technologies which could have a major impact on the field in the near future. The second part of this chapter highlights current developments in the field of materials that are used for these high-resolution 3D printing technologies.

Keywords

References

Whitesides GM (2006) Nature 442:368 [PMID: 16871203]
Berthier J, Silberzan P (2010) Microfluidics for biotechnology. Artech House
Gervais L, de Rooij N, Delamarche E (2011) Adv Mater 23:H151 [PMID: 21567479]
Holmes D, Gawad S (2010) Hughes MP, Hoettges KF (eds) Microengineering in biotechnology. Humana Press, Totowa, pp 55–80 [DOI: 10.1007/978-1-60327-106-6_2]
Manz A, Fettinger JC, Verpoorte E, Lüdi H, Widmer HM, Harrison DJ (1991) TrAC Trends Anal Chem 10:144 [DOI: 10.1016/0165-9936(91)85116-9]
Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Anal Chem 64:1926 [DOI: 10.1021/ac00041a030]
De Mello A (2002) Lab Chip 2:31N [PMID: 15100832]
Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Anal Chem 70:4974 [PMID: 21644679]
Zhao S, Cong H, Pan T (2009) Lab Chip 9:1128 [PMID: 19350095]
Hong T-F, Ju W-J, Wu M-C, Tai C-H, Tsai C-H, Fu L-M (2010) Microfluid Nanofluid 9:1125 [DOI: 10.1007/s10404-010-0633-0]
Chen Y, Zhang L, Chen G (2008) Electrophoresis 29:1801 [PMID: 18384069]
Waldbaur A, Rapp H, Lange K, Rapp BE (2011) Anal Methods 3:2681 [DOI: 10.1039/c1ay05253e]
Kotz F, Risch P, Helmer D, Rapp BE (2018) Micromachines 9:115 [>PMCID: ]
Su W, Cook BS, Fang Y, Tentzeris MM (2016) Sci Rep 6:35111 [PMID: 27713545]
Waheed S, Cabot JM, Macdonald NP, Lewis T, Guijt RM, Paull B, Breadmore MC (2016) Lab Chip 16:1993 [PMID: 27146365]
Sochol RD, Sweet E, Glick CC, Venkatesh S, Avetisyan A, Ekman KF, Raulinaitis A, Tsai A, Wienkers A, Korner K, Hanson K, Long A, Hightower BJ, Slatton G, Burnett DC, Massey TL, Iwai K, Lee LP, Pister KSJ, Lin L (2016) Lab Chip 16:668 [PMID: 26725379]
Nielsen AV, Beauchamp MJ, Nordin GP, Woolley AT (2020) Ann Rev Anal Chem 13
Shallan AI, Smejkal P, Corban M, Guijt RM, Breadmore MC (2014) Anal Chem 86:3124 [PMID: 24512498]
Rogers CI, Qaderi K, Woolley AT, Nordin GP (2015) Biomicrofluidics 9:016501 [PMID: 25610517]
Lee Y-S, Bhattacharjee N, Folch A (2018) Lab Chip 18:1207 [PMID: 29553156]
Enders A, Siller IG, Urmann K, Hoffmann MR, Bahnemann J (2019) Small 15:1804326
Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL, Zaita AJ, Greenfield PT, Calafat NJ, Gounley JP, Ta AH, Johansson F, Randles A, Rosenkrantz JE, Louis-Rosenberg JD, Galie PA, Stevens KR, Miller JS (2019) Science 364:458 [PMID: 31048486]
Lee W, Kwon D, Choi W, Jung GY, Jeon S (2015) Sci Rep 5:7717 [PMID: 25578942]
Shemesh J, Jalilian I, Shi A, Yeoh GH, Tate MLK, Warkiani ME (2015) Lab Chip 15:4114 [PMID: 26334370]
Hull CW (1986) Patent US4575330
Kotz F, Arnold K, Bauer W, Schild D, Keller N, Sachsenheimer K, Nargang TM, Richter C, Helmer D, Rapp BE (2017) Nature 544:337 [PMID: 28425999]
Gong H, Bickham BP, Woolley AT, Nordin GP (2017) Lab Chip 17:2899 [PMID: 28726927]
Lee MP, Cooper GJT, Hinkley T, Gibson GM, Padgett MJ, Cronin L (2015) Sci Rep 5:1
Xu G, Zhao W, Tang Y, Lu B (2006) Rapid Prototyp J 12:12 [DOI: 10.1108/13552540610637228]
Behroodi E, Latifi H, Najafi F (2019) Sci Rep 9:1 [DOI: 10.1038/s41598-019-56044-3]
Ligon SC, Liska R, Stampfl J, Gurr M, Mülhaupt R (2017) Chem Rev 117:10212 [PMID: 28756658]
Au AK, Huynh W, Horowitz LF, Folch A (2016) Angew Chem Int Ed 55:3862 [DOI: 10.1002/anie.201504382]
Bertsch A, Jiguet S, Bernhard P, Renaud P (2002) MRS Online Proceedings Library, p 759
Gong H, Beauchamp M, Perry S, Woolley AT, Nordin GP (2015) RSC Adv 5:106621 [PMID: 26744624]
Jacobs PF (1992) Rapid prototyping and manufacturing: fundamentals of stereolithography. Society of Manufacturing Engineers
Beauchamp MJ, Gong H, Woolley AT, Nordin GP (2018) Micromachines (Basel) 9:9
Beauchamp MJ, Nielsen AV, Gong H, Nordin GP, Woolley AT (2019) Anal Chem 91:7418 [PMID: 31056901]
Gong H, Woolley AT, Nordin GP (2019) Biomicrofluidics 13:014106 [PMID: 30766649]
Männel MJ, Selzer L, Bernhardt R, Thiele J (2019) Adv Mater Technol 4:1800408 [DOI: 10.1002/admt.201800408]
Waldbaur A, Carneiro B, Hettich P, Wilhelm E, Rapp BE (2013) Microfluid Nanofluid 15:625 [DOI: 10.1007/s10404-013-1177-x]
Tumbleston JR, Shirvanyants D, Ermoshkin N, Janusziewicz R, Johnson AR, Kelly D, Chen K, Pinschmidt R, Rolland JP, Ermoshkin A (2015) Science 347:1349 [PMID: 25780246]
de Beer MP, van der Laan HL, Cole MA, Whelan RJ, Burns MA, Scott TF (2019) Sci Adv 5:eaau8723 [PMID: 30746465]
Walker DA, Hedrick JL, Mirkin CA (2019) Science 366:360 [PMID: 31624211]
Johnson AR, Caudill CL, Tumbleston JR, Bloomquist CJ, Moga KA, Ermoshkin A, Shirvanyants D, Mecham SJ, Luft JC, DeSimone JM (2016) PLoS One 11:e0162518 [PMID: 27607247]
Kelly BE, Bhattacharya I, Heidari H, Shusteff M, Spadaccini CM, Taylor HK (2019) Science 363:1075 [PMID: 30705152]
Bernal PN, Delrot P, Loterie D, Li Y, Malda J, Moser C, Levato R (2019) Adv Mater 31:1904209 [DOI: 10.1002/adma.201904209]
Maruo S, Nakamura O, Kawata S (1997) vol 22. OSA Publishing, p 132
Perrucci F, Bertana V, Marasso SL, Scordo G, Ferrero S, Pirri CF, Cocuzza M, El-Tamer A, Hinze U, Chichkov BN, Canavese G, Scaltrito L (2018) Microelectron Eng 195:95 [DOI: 10.1016/j.mee.2018.04.001]
Alsharhan AT, Acevedo R, Warren R, Sochol RD (2019) Lab Chip 19:2799 [PMID: 31334525]
Lamont AC, Alsharhan AT, Sochol RD (2019) Sci Rep 9:1 [DOI: 10.1038/s41598-018-36727-z]
Schoch RB, Han J, Renaud P (2008) Rev Mod Phys 80:839 [DOI: 10.1103/RevModPhys.80.839]
Vanderpoorten O, Peter Q, Challa PK, Keyser UF, Baumberg J, Kaminski CF, Knowles TPJ (2019) Microsyst Nanoeng 5:1 [DOI: 10.1038/s41378-019-0080-3]
Hengsbach S, Lantada AD (2014) Biomed Microdevices 16:617 [PMID: 24781883]
Amato L, Gu Y, Bellini N, Eaton SM, Cerullo G, Osellame R (2012) Lab Chip 12:1135 [PMID: 22318474]
Pearre BW, Michas C, Tsang J-M, Gardner TJ, Otchy TM (2019) Addit Manuf 30:100887 [PMID: 32864346]
Straub M, Gu M (2002) Opt Lett 27:1824 [PMID: 18033375]
Ovsianikov A, Deiwick A, van Vlierberghe S, Dubruel P, Möller L, Dräger G, Chichkov B (2011) Biomacromolecules 12:851 [PMID: 21366287]
Skylar-Scott MA, Liu M-C, Wu Y, Dixit A, Yanik MF (2016) Adv Healthc Mater 5:1233 [PMID: 27059425]
Thiel M, Reiner RR, Niesler F, Tanguy Y (2016) Method for producing a three-dimensional structure, US20160114530A1
Kato J, Takeyasu N, Adachi Y, Sun H-B, Kawata S (2005) Appl Phys Lett 86:044102 [DOI: 10.1063/1.1855404]
Dong X-Z, Zhao Z-S, Duan X-M (2007) Appl Phys Lett 91:124103 [DOI: 10.1063/1.2789661]
Takahashi H, Hasegawa S, Takita A, Hayasaki Y (2008) Opt Express 16:16592 [PMID: 18852768]
Jenness NJ, Wulff KD, Johannes MS, Padgett MJ, Cole DG, Clark RL (2008) Opt Express 16:15942 [PMID: 18825231]
Geng Q, Wang D, Chen P, Chen S-C (2019) Nat Commun 10:1 [DOI: 10.1038/s41467-018-07882-8]
Vizsnyiczai G, Kelemen L, Ormos P (2014) Opt Express 22:24217 [PMID: 25321996]
Hahn V, Kiefer P, Frenzel T, Qu J, Blasco E, Barner-Kowollik C, Wegener M (2020) Adv Funct Mater:1907795
Stichel T, Hecht B, Houbertz R, Sextl G (2015) Appl Phys A Mater Sci Process 121:187 [DOI: 10.1007/s00339-015-9407-6]
Stichel T, Hecht B, Steenhusen S, Houbertz R, Sextl G (2016) Opt Lett 41:4269 [PMID: 27628374]
Jonušauskas L, Rekštytė S, Malinauskas M (2014) OE 53:125102 [DOI: 10.1117/1.OE.53.12.125102]
Tan Y, Chu W, Wang P, Li W, Qi J, Xu J, Wang Z, Cheng Y (2018) Phys Scr 94:015501 [DOI: 10.1088/1402-4896/aaec99]
Carve M, Wlodkowic D (2018) Micromachines 9:91 [>PMCID: ]
Van den Driesche S, Lucklum F, Bunge F, Vellekoop MJ (2018) Micromachines 9:71 [>PMCID: ]
Leigh SJ, Gilbert HTJ, Barker IA, Becker JM, Richardson SM, Hoyland JA, Covington JA, Dove AP (2013) Biomacromolecules 14:186 [PMID: 23167767]
Männel MJ, Fischer C, Thiele J (2020) Micromachines 11:246 [>PMCID: ]
Kitson PJ, Marie G, Francoia J-P, Zalesskiy SS, Sigerson RC, Mathieson JS, Cronin L (2018) Science 359:314 [PMID: 29348235]
Hülsenberg D, Harnisch A, Bismarck A (2005) Microstructuring of glasses. Springer, Berlin
Klein J, Stern M, Franchin G, Kayser M, Inamura C, Dave S, Weaver JC, Houk P, Colombo P, Yang M, Oxman N (2015) 3D printing and additive manufacturing. 2:92
Kotz F, Risch P, Helmer D, Rapp BE (2019) Adv Mater 31:1805982 [DOI: 10.1002/adma.201805982]
Kotz F, Plewa K, Bauer W, Schneider N, Keller N, Nargang T, Helmer D, Sachsenheimer K, Schäfer M, Worgull M, Greiner C, Richter C, Rapp BE (2016) Adv Mater 28:4646 [PMID: 27060964]
Kotz F, Helmer D, Rapp BE (2018) Int Soc Opt Photo:104910A
Kotz F, Plewa K, Bauer W, Hanemann T, Waldbaur A, Wilhelm E, Neumann C, Rapp BE (2015) Int Soc Opt Photo:932003–932006
Kotz F, Schneider N, Striegel A, Wolfschläger A, Keller N, Worgull M, Bauer W, Schild D, Milich M, Greiner C, Helmer D, Rapp BE (2018) Adv Mater 30:1707100 [DOI: 10.1002/adma.201707100]
Kotz F, Risch P, Arnold K, Sevim S, Puigmartí-Luis J, Quick A, Thiel M, Hrynevich A, Dalton PD, Helmer D, Rapp BE (2019) Nat Commun 10:1439 [PMID: 30926801]
Toepke MW, Beebe DJ (2006) Lab Chip 6:1484 [PMID: 17203151]
Bhagat AAS, Jothimuthu P, Papautsky I (2007) Lab Chip 7:1192 [PMID: 17713619]
Choi KM, Rogers JA (2003) J Am Chem Soc 125:4060 [PMID: 12670222]
Desai SP, Taff BM, Voldman J (2008) Langmuir 24:575 [PMID: 18081333]
Bhattacharjee N, Parra-Cabrera C, Kim YT, Kuo AP, Folch A (2018) Adv Mater 30:1800001 [DOI: 10.1002/adma.201800001]
Helmer D, Voigt A, Wagner S, Keller N, Sachsenheimer K, Kotz F, Nargang TM, Rapp BE (2017) Sci Rep 7:7387 [PMID: 28785064]
Perry H, Greiner C, Georgakoudi I, Cronin-Golomb M, Omenetto FG (2007) Rev Sci Instrum 78:044302 [PMID: 17477682]
Coenjarts CA, Ober CK (2004) Chem Mater 16:5556 [DOI: 10.1021/cm048717z]
Rekštytė S, Malinauskas M, Juodkazis S (2013) Opt Exp 21:17028 [DOI: 10.1364/OE.21.017028]
Becker H (2010) Lab Chip 10:271 [PMID: 20090997]
Kotz F, Arnold K, Wagner S, Bauer W, Keller N, Nargang TM, Helmer D, Rapp BE (2018) Adv Eng Mater 20:1700699 [DOI: 10.1002/adem.201700699]

MeSH Term

Lab-On-A-Chip Devices
Microfluidics
Printing, Three-Dimensional

Word Cloud

Similar Articles

Cited By