Genome Wide Analysis of the Transcriptional Profiles in Different Regions of the Developing Rice Grains.

Ting-Ying Wu, Marlen Müller, Wilhelm Gruissem, Navreet K Bhullar
Author Information
  1. Ting-Ying Wu: Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
  2. Marlen Müller: Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
  3. Wilhelm Gruissem: Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland.
  4. Navreet K Bhullar: Department of Biology, Plant Biotechnology, Institute of Molecular Plant Biology, ETH Zurich, 8092, Zurich, Switzerland. bhullarn@ethz.ch. ORCID

Abstract

BACKGROUND: Rice is an important food source for humans worldwide. Because of its nutritional and agricultural significance, a number of studies addressed various aspects of rice grain development and grain filling. Nevertheless, the molecular processes underlying grain filling and development, and in particular the contributions of different grain tissues to these processes, are not understood.
MAIN TEXT: Using RNA-sequencing, we profiled gene expression activity in grain tissues comprised of cross cells (CC), the nucellar epidermis (NE), ovular vascular trace (OVT), endosperm (EN) and the aleurone layer (AL). These tissues were dissected using laser capture microdissection (LCM) at three distinct grain development stages. The mRNA expression datasets offer comprehensive and new insights into the gene expression patterns in different rice grain tissues and their contributions to grain development. Comparative analysis of the different tissues revealed their similar and/or unique functions, as well as the spatio-temporal regulation of common and tissue-specific genes. The expression patterns of genes encoding hormones and transporters indicate an important role of the OVT tissue in metabolite transport during grain development. Gene co-expression network prediction on OVT-specific genes identified several distinct and common development-specific transcription factors. Further analysis of enriched DNA sequence motifs proximal to OVT-specific genes revealed known and novel DNA sequence motifs relevant to rice grain development.
CONCLUSION: Together, the dataset of gene expression in rice grain tissues is a novel and useful resource for further work to dissect the molecular and metabolic processes during rice grain development.

Keywords

References

  1. Plant Physiol. 2003 Jun;132(2):618-28 [PMID: 12805592]
  2. BMC Bioinformatics. 2010 Apr 01;11:165 [PMID: 20356413]
  3. Plant Physiol. 2012 Dec;160(4):2007-14 [PMID: 23090587]
  4. Annu Rev Plant Biol. 2012;63:131-52 [PMID: 22404471]
  5. EMBO J. 2005 Dec 7;24(23):4041-51 [PMID: 16270029]
  6. Plant Biotechnol J. 2012 Aug;10(6):668-79 [PMID: 22672716]
  7. Proc Natl Acad Sci U S A. 2013 Jan 29;110(5):E435-44 [PMID: 23319655]
  8. Nucleic Acids Res. 2008 Jan;36(Database issue):D1028-33 [PMID: 18089549]
  9. Planta. 2011 Sep;234(3):541-54 [PMID: 21547461]
  10. Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8 [PMID: 19458158]
  11. Plant Biotechnol J. 2003 Jan;1(1):59-70 [PMID: 17147681]
  12. Plant Sci. 2014 Apr;219-220:51-60 [PMID: 24576764]
  13. Plant Physiol. 2013 May;162(1):440-55 [PMID: 23478895]
  14. Plant Physiol. 2004 Apr;134(4):1500-13 [PMID: 15047897]
  15. Bioinformatics. 2010 Apr 1;26(7):860-6 [PMID: 20147307]
  16. Front Plant Sci. 2014 Aug 25;5:412 [PMID: 25202316]
  17. Plant Mol Biol. 2013 Mar;81(4-5):363-78 [PMID: 23322175]
  18. Plant Cell. 2015 Mar;27(3):513-31 [PMID: 25783031]
  19. Funct Integr Genomics. 2011 Jun;11(2):259-73 [PMID: 21221698]
  20. Front Plant Sci. 2012 Feb 08;3:16 [PMID: 22639639]
  21. Plant Cell. 2008 Aug;20(8):2130-45 [PMID: 18708477]
  22. Plant Physiol. 2014 May 7;165(3):1203-1220 [PMID: 24808098]
  23. PLoS One. 2012;7(2):e31081 [PMID: 22363552]
  24. Plant Physiol Biochem. 2008 Dec;46(12):1051-61 [PMID: 18723362]
  25. Annu Rev Plant Biol. 2003;54:431-54 [PMID: 14502998]
  26. Proc Natl Acad Sci U S A. 2014 May 27;111(21):7582-7 [PMID: 24821765]
  27. Nucleic Acids Res. 2013 Jul;41(Web Server issue):W98-103 [PMID: 23632162]
  28. PLoS One. 2013;8(2):e57360 [PMID: 23451212]
  29. Nat Protoc. 2007;2(10):2366-82 [PMID: 17947979]
  30. Genes Dev. 2000 Jan 1;14(1):28-33 [PMID: 10640273]
  31. Nat Genet. 2008 Nov;40(11):1370-4 [PMID: 18820698]
  32. Plant J. 2010 Aug;63(4):670-9 [PMID: 20545893]
  33. Plant Physiol. 2008 Apr;146(4):1738-58 [PMID: 18281415]
  34. Plant J. 2012 Aug;71(4):639-55 [PMID: 22487146]
  35. Plant Cell Physiol. 2008 Oct;49(10):1429-50 [PMID: 18718932]
  36. Plant Cell Physiol. 2019 Mar 1;60(3):626-642 [PMID: 30517758]
  37. Plant J. 2006 Nov;48(3):354-66 [PMID: 17010113]
  38. Plant Mol Biol. 2009 Feb;69(3):261-71 [PMID: 18998058]
  39. Plant Physiol. 2010 Mar;152(3):1693-704 [PMID: 20081045]
  40. Annu Rev Plant Biol. 2013;64:189-217 [PMID: 23451786]
  41. Proteome Sci. 2011 Sep 30;9(1):61 [PMID: 21957990]
  42. Curr Protoc Bioinformatics. 2012 Jun;Chapter 1:1.12.1-1.12.43 [PMID: 22700311]
  43. PLoS One. 2012;7(12):e51435 [PMID: 23251532]
  44. J Exp Bot. 2004 Aug;55(404):1765-73 [PMID: 15258169]
  45. Plant Cell Physiol. 2010 Dec;51(12):1988-2001 [PMID: 20959378]
  46. J Exp Bot. 2009;60(4):1333-47 [PMID: 19297552]
  47. Plant J. 2015 Apr;82(1):41-53 [PMID: 25684030]
  48. Int J Mol Sci. 2019 Feb 22;20(4): [PMID: 30813307]
  49. Trends Plant Sci. 2014 Mar;19(3):183-92 [PMID: 24394523]
  50. PLoS One. 2012;7(2):e30646 [PMID: 22347394]
  51. Front Plant Sci. 2013 May 29;4:156 [PMID: 23755054]
  52. Plant Cell Physiol. 2016 May;57(5):976-85 [PMID: 26872836]
  53. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  54. J Biosci. 2003 Jun;28(4):455-69 [PMID: 12799492]
  55. Proteomics. 2008 Sep;8(17):3577-87 [PMID: 18686304]
  56. Plant Biotechnol J. 2011 Apr;9(3):315-27 [PMID: 20809928]
  57. Plant Physiol. 2016 Mar;170(3):1549-65 [PMID: 26754666]
  58. J Exp Bot. 2011 Apr;62(7):2319-32 [PMID: 21220781]
  59. Plant Physiol. 2012 Aug;159(4):1571-81 [PMID: 22649273]
  60. J Exp Bot. 2012 May;63(8):2853-72 [PMID: 22447967]
  61. Plant Physiol. 2011 Jul;156(3):1164-75 [PMID: 21502185]
  62. Plant J. 2006 Jul;47(2):310-27 [PMID: 16771774]
  63. Proc Natl Acad Sci U S A. 2013 Sep 17;110(38):15485-90 [PMID: 23986496]
  64. Plant Cell. 2012 Mar;24(3):1049-65 [PMID: 22408076]
  65. J Exp Bot. 2011 May;62(8):2615-32 [PMID: 21289079]
  66. Curr Opin Plant Biol. 2005 Feb;8(1):77-85 [PMID: 15653404]
  67. Proc Natl Acad Sci U S A. 2010 May 4;107(18):8063-70 [PMID: 20385809]
  68. Plant Cell. 2019 May;31(5):974-992 [PMID: 30914497]
  69. Plant Physiol. 2002 Nov;130(3):1152-61 [PMID: 12427982]
  70. PLoS One. 2012;7(11):e49210 [PMID: 23166615]
  71. Plant Biotechnol J. 2008 Jun;6(5):465-76 [PMID: 18422887]
  72. Methods Mol Biol. 2014;1153:285-99 [PMID: 24777806]
  73. Genome Biol. 2007;8(2):R24 [PMID: 17324271]
  74. Plant Signal Behav. 2013 Oct;8(10): [PMID: 24270689]
  75. Science. 2014 Jul 18;345(6194):1250091 [PMID: 25035498]
  76. Plant Cell. 2013 Oct;25(10):4166-82 [PMID: 24096344]
  77. Annu Rev Plant Biol. 2012;63:153-82 [PMID: 22224450]

Word Cloud

Similar Articles

Cited By