SARS-CoV-2 infection of human iPSC-derived cardiac cells predicts novel cytopathic features in hearts of COVID-19 patients.

Juan A P��rez-Bermejo, Serah Kang, Sarah J Rockwood, Camille R Simoneau, David A Joy, Gokul N Ramadoss, Ana C Silva, Will R Flanigan, Huihui Li, Ken Nakamura, Jeffrey D Whitman, Melanie Ott, Bruce R Conklin, Todd C McDevitt
Author Information
  1. Juan A P��rez-Bermejo: Gladstone Institutes, San Francisco, CA.
  2. Serah Kang: Gladstone Institutes, San Francisco, CA.
  3. Sarah J Rockwood: Gladstone Institutes, San Francisco, CA.
  4. Camille R Simoneau: Gladstone Institutes, San Francisco, CA.
  5. David A Joy: Gladstone Institutes, San Francisco, CA.
  6. Gokul N Ramadoss: Gladstone Institutes, San Francisco, CA.
  7. Ana C Silva: Gladstone Institutes, San Francisco, CA.
  8. Will R Flanigan: Gladstone Institutes, San Francisco, CA.
  9. Huihui Li: Gladstone Institutes, San Francisco, CA.
  10. Ken Nakamura: Gladstone Institutes, San Francisco, CA.
  11. Jeffrey D Whitman: UCSF Department of Laboratory Medicine, San Francisco, CA.
  12. Melanie Ott: Gladstone Institutes, San Francisco, CA.
  13. Bruce R Conklin: Gladstone Institutes, San Francisco, CA.
  14. Todd C McDevitt: Gladstone Institutes, San Francisco, CA.

Abstract

Although COVID-19 causes cardiac dysfunction in up to 25% of patients, its pathogenesis remains unclear. Exposure of human iPSC-derived heart cells to SARS-CoV-2 revealed productive infection and robust transcriptomic and morphological signatures of damage, particularly in cardiomyocytes. Transcriptomic disruption of structural proteins corroborated adverse morphologic features, which included a distinct pattern of myofibrillar fragmentation and numerous iPSC-cardiomyocytes lacking nuclear DNA. Human autopsy specimens from COVID-19 patients displayed similar sarcomeric disruption, as well as cardiomyocytes without DNA staining. These striking cytopathic features provide new insights into SARS-CoV-2 induced cardiac damage, offer a platform for discovery of potential therapeutics, and raise serious concerns about the long-term consequences of COVID-19.

References

  1. JAMA Cardiol. 2020 Nov 01;5(11):1265-1273 [PMID: 32730619]
  2. Nat Commun. 2020 Nov 18;11(1):5885 [PMID: 33208793]
  3. Cardiovasc Res. 2020 Dec 1;116(14):2207-2215 [PMID: 32966582]
  4. Circ Res. 2020 Jul 31;127(4):571-587 [PMID: 32586214]
  5. Nature. 2020 Nov;587(7835):657-662 [PMID: 32726803]
  6. J Geriatr Cardiol. 2020 Apr;17(4):224-228 [PMID: 32362922]
  7. JAMA Cardiol. 2020 Nov 1;5(11):1281-1285 [PMID: 32730555]
  8. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  9. Pharmacol Ther. 2020 Sep;213:107587 [PMID: 32470470]
  10. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  11. JACC Cardiovasc Imaging. 2020 Nov;13(11):2330-2339 [PMID: 32763118]
  12. Nat Methods. 2015 Apr;12(4):357-60 [PMID: 25751142]
  13. Virology. 2010 Jan 5;396(1):59-68 [PMID: 19896686]
  14. Nat Rev Cardiol. 2020 Sep;17(9):543-558 [PMID: 32690910]
  15. Sci Adv. 2020 Oct 16;6(42): [PMID: 33067239]
  16. Cell Stem Cell. 2013 Jan 3;12(1):127-37 [PMID: 23168164]
  17. Bioinformatics. 2014 Apr 1;30(7):923-30 [PMID: 24227677]
  18. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  19. JAMA Cardiol. 2020 Jul 1;5(7):811-818 [PMID: 32219356]
  20. JAMA. 2020 May 26;323(20):2052-2059 [PMID: 32320003]
  21. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  22. OMICS. 2012 May;16(5):284-7 [PMID: 22455463]
  23. JAMA. 2020 Apr 28;323(16):1612-1614 [PMID: 32191259]
  24. Circulation. 2020 Jun 9;141(23):1930-1936 [PMID: 32243205]
  25. Nat Methods. 2014 Mar;11(3):291-3 [PMID: 24509632]
  26. Nat Commun. 2019 May 20;10(1):2238 [PMID: 31110246]
  27. Circulation. 2020 Jul 7;142(1):68-78 [PMID: 32293910]
  28. Mol Biol Cell. 2019 Jul 1;30(14):1664-1675 [PMID: 31091167]
  29. Intensive Care Med. 2020 May;46(5):846-848 [PMID: 32125452]
  30. J Clin Pathol. 2002 Nov;55(11):801-11 [PMID: 12401816]
  31. JAMA. 2020 Jun 23;323(24):2518-2520 [PMID: 32437497]
  32. Nat Med. 2020 Jul;26(7):1077-1083 [PMID: 32405028]
  33. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  34. Eur J Clin Invest. 2009 Jul;39(7):618-25 [PMID: 19453650]
  35. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  36. JAMA Cardiol. 2020 Jul 1;5(7):802-810 [PMID: 32211816]
  37. Nat Protoc. 2013 Jan;8(1):162-75 [PMID: 23257984]
  38. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  39. Lancet Respir Med. 2020 Jul;8(7):681-686 [PMID: 32473124]
  40. Biomedicines. 2020 Dec 18;8(12): [PMID: 33352880]
  41. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  42. Eur J Heart Fail. 2020 May;22(5):911-915 [PMID: 32275347]
  43. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  44. Bioinformatics. 2010 Apr 1;26(7):979-81 [PMID: 20338898]
  45. Lancet Child Adolesc Health. 2020 Oct;4(10):790-794 [PMID: 32828177]
  46. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  47. Eur Heart J Cardiovasc Imaging. 2020 Sep 1;21(9):949-958 [PMID: 32556199]
  48. Lancet. 2020 Feb 15;395(10223):507-513 [PMID: 32007143]
  49. Mol Biol Cell. 2016 Aug 1;27(15):2351-9 [PMID: 27307582]
  50. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  51. Nat Rev Cardiol. 2018 Oct;15(10):585-600 [PMID: 29872165]
  52. Proc Natl Acad Sci U S A. 1983 Dec;80(23):7109-12 [PMID: 6359163]
  53. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]

Grants

  1. P01 HL146366/NHLBI NIH HHS
  2. U01 ES032673/NIEHS NIH HHS
  3. R01 AG065428/NIA NIH HHS
  4. R01 HL130533/NHLBI NIH HHS
  5. DP1 DA038043/NIDA NIH HHS

Word Cloud

Similar Articles

Cited By