Melting dsDNA Donor Molecules Greatly Improves Precision Genome Editing in .

Krishna S Ghanta, Craig C Mello
Author Information
  1. Krishna S Ghanta: RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605. ORCID
  2. Craig C Mello: RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, Massachusetts 01605.

Abstract

CRISPR genome editing has revolutionized genetics in many organisms. In the nematode , one injection into each of the two gonad arms of an adult hermaphrodite exposes hundreds of meiotic germ cells to editing mixtures, permitting the recovery of multiple indels or small precision edits from each successfully injected animal. Unfortunately, particularly for long insertions, editing efficiencies can vary widely, necessitating multiple injections, and often requiring coselection strategies. Here, we show that melting double-stranded DNA (dsDNA) donor molecules prior to injection increases the frequency of precise homology-directed repair (HDR) by several fold for longer edits. We describe troubleshooting strategies that enable consistently high editing efficiencies resulting, for example, in up to 100 independent GFP knock-ins from a single injected animal. These efficiencies make by far the easiest metazoan to genome edit, removing barriers to the use and adoption of this facile system as a model for understanding animal biology.

Keywords

References

Genetics. 2015 Sep;201(1):47-54 [PMID: 26187122]
Elife. 2021 Oct 19;10: [PMID: 34665130]
Mol Cell Biol. 1985 Dec;5(12):3484-96 [PMID: 3837845]
Genetics. 2019 Apr;211(4):1143-1154 [PMID: 30696716]
Methods. 2017 May 15;121-122:86-93 [PMID: 28392263]
Genetics. 2014 Dec;198(4):1347-56 [PMID: 25249454]
Genetics. 1974 May;77(1):71-94 [PMID: 4366476]
G3 (Bethesda). 2019 Jul 9;9(7):2195-2198 [PMID: 31064766]
Genetics. 2013 Nov;195(3):1181-5 [PMID: 23979579]
Genetics. 2014 Nov;198(3):837-46 [PMID: 25161212]
Dev Biol. 1999 Jan 1;205(1):111-28 [PMID: 9882501]
Genetics. 2018 Nov;210(3):781-787 [PMID: 30213854]
Cell Res. 2014 Feb;24(2):247-50 [PMID: 24418757]
Nucleic Acids Res. 2016 Sep 6;44(15):e128 [PMID: 27257074]
Genetics. 2016 Apr;202(4):1277-88 [PMID: 26837755]
G3 (Bethesda). 2017 Nov 6;7(11):3693-3698 [PMID: 28893845]
Genetics. 2013 Nov;195(3):1177-80 [PMID: 23979576]
EMBO J. 1991 Dec;10(12):3959-70 [PMID: 1935914]
MicroPubl Biol. 2017 Dec 01;2017: [PMID: 32550354]
Cell. 1983 Aug;34(1):13-23 [PMID: 6224569]
Genetics. 2019 Feb;211(2):431-457 [PMID: 30504364]
Genetics. 2014 Aug;197(4):1069-80 [PMID: 24879462]
Genetics. 2015 Feb;199(2):363-77 [PMID: 25491644]

Grants

  1. P01 HD078253/NICHD NIH HHS
  2. R01 GM058800/NIGMS NIH HHS
  3. R37 GM058800/NIGMS NIH HHS
  4. /Howard Hughes Medical Institute

MeSH Term

Animals
Caenorhabditis elegans
DNA
Gene Editing
Nucleic Acid Denaturation
Recombinational DNA Repair

Chemicals

DNA