Ahmad A Jiman, David C Ratze, Elissa J Welle, Paras R Patel, Julianna M Richie, Elizabeth C Bottorff, John P Seymour, Cynthia A Chestek, Tim M Bruns
McCorry, L. K. Physiology of the autonomic nervous system. Am. J. Pharm. Educ. 71, 78 (2007).
[PMID:
17786266]
Agostoni, E., Chinnock, J. E., De BurghDaly, M. & Murray, J. G. Functional and histological studies of the vagus nerve and its branches to the heart, lungs and abdominal viscera in the cat. J. Physiol. 135, 182–205 (1957).
[PMID:
13398974]
Andrews, P. L. R. Vagal afferent innervation of the gastrointestinal tract. Prog. Brain Res. 67, 65–86 (1986).
[PMID:
3823483]
Berthoud, H. R. & Neuhuber, W. L. Functional and chemical anatomy of the afferent vagal system. Auton. Neurosci. Basic Clin. 85, 1–17 (2000).
[DOI:
10.1016/S1566-0702(00)00215-0]
Borovikova, L. V. et al. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405, 458–462 (2000).
[PMID:
10839541]
Browning, K. N., Verheijden, S. & Boeckxstaens, G. E. The vagus nerve in appetite regulation, mood, and intestinal inflammation. Gastroenterology 152, 730–744 (2017).
[PMID:
27988382]
Berthoud, H. R. The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25 (2008).
[PMID:
18482776]
Waise, T. M. Z., Dranse, H. J. & Lam, T. K. T. The metabolic role of vagal afferent innervation. Nat. Rev. Gastroenterol. Hepatol. 15, 625–636 (2018).
[PMID:
30185916]
Qing, K. Y. et al. B fibers are the best predictors of cardiac activity during Vagus nerve stimulation. Bioelectron. Med. 4, 5 (2018).
[PMID:
32232081]
Kajekar, R., Proud, D., Myers, A. C., Meeker, S. N. & Undem, B. J. Characterization of vagal afferent subtypes stimulated by bradykinin in guinea pig trachea. J. Pharmacol. Exp. Ther. 289, 682–687 (1999).
[PMID:
10215640]
Hoffman, H. H. & Schnitzlein, H. N. The numbers of nerve fibers in the vagus nerve of man. Anat. Rec. 139, 429–435 (1961).
[PMID:
13963923]
Evans, D. H. L. & Murray, J. G. Histological and functional studies on the fibre composition of the vagus nerve of the rabbit. J. Anat. 88, 320–337 (1954).
[PMID:
13192020]
Foley, J. O. & DuBois, F. S. Quantitative studies of the vagus nerve in the Cat. I. The ratio of sensory to motor fibers. J. Comp. Neurol. 67, 49–67 (1937).
[DOI:
10.1002/cne.900670104]
Birmingham, K. et al. Bioelectronic medicines: a research roadmap. Nat. Rev. Drug Discov. 13, 399–400 (2014).
[PMID:
24875080]
Pavlov, V. A. & Tracey, K. J. Bioelectronic medicine: updates, challenges and paths forward. Bioelectron. Med. 5, 1 (2019).
[PMID:
32232092]
Ben-Menachem, E. Vagus-nerve stimulation for the treatment of epilepsy. Lancet Neurol. 1, 477–482 (2002).
[PMID:
12849332]
Dawson, J. et al. Safety, feasibility, and efficacy of vagus nerve stimulation paired with upper-limb rehabilitation after ischemic stroke. Stroke 47, 143–150 (2016).
[PMID:
26645257]
Spindler, P., Bohlmann, K., Straub, H. B., Vajkoczy, P. & Schneider, U. C. Effects of vagus nerve stimulation on symptoms of depression in patients with difficult-to-treat epilepsy. Seizure 69, 77–79 (2019).
[DOI:
10.1016/j.seizure.2019.04.001]
Koopman, F. A. et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proc. Natl. Acad. Sci. USA 113, 8284–8289 (2016).
[PMID:
27382171]
Apovian, C. M. et al. Two-year outcomes of vagal nerve blocking (vBloc) for the treatment of obesity in the recharge trial. Obes. Surg. 27, 169–176 (2017).
[PMID:
27506803]
Shikora, S. A. et al. Intermittent vagal nerve block for improvements in obesity, cardiovascular risk factors, and glycemic control in patients with type 2 diabetes mellitus: 2-year results of the VBLOC DM2 study. Obes. Surg. 26, 1021–1028 (2015).
[DOI:
10.1007/s11695-015-1914-1]
McCallum, G. A. et al. Chronic interfacing with the autonomic nervous system using carbon nanotube (CNT) yarn electrodes. Sci. Rep. 7, 11723 (2017).
[PMID:
28916761]
Micera, S. & Navarro, X. Bidirectional Interfaces with the peripheral nervous system. Int. Rev. Neurobiol. 86, 23–38 (2009).
[PMID:
19607988]
Larson, C. E. & Meng, E. A review for the peripheral nerve interface designer. J. Neurosci. Methods 332, 108523 (2019).
[PMID:
31743684]
Guo, T. et al. Extracellular single-unit recordings from peripheral nerve axons in vitro by a novel multichannel microelectrode array. Sens. Actuators B Chem. 315, 128111 (2020).
[DOI:
10.1016/j.snb.2020.128111]
Gabella, G. & Pease, H. L. Number of axons in the abdominal vagus of the rat. Brain Res. 58, 465–469 (1973).
[PMID:
4756138]
Prechtl, J. C. & Powley, T. L. The fiber composition of the abdominal vagus of the rat. Anat. Embryol. (Berlin) 181, 101–115 (1990).
[DOI:
10.1007/BF00198950]
Ward, M. P. et al. A flexible platform for biofeedback-driven control and personalization of electrical nerve stimulation therapy. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 475–484 (2015).
[PMID:
25167554]
Gillis, W. F. et al. Carbon fiber on polyimide ultra-microelectrodes. J. Neural Eng. 15, 016010 (2018).
[PMID:
28905812]
Silverman, H. A. et al. Standardization of methods to record Vagus nerve activity in mice. Bioelectron. Med. 4, 3 (2018).
[PMID:
32232079]
Zanos, T. et al. Identification of cytokine-specific sensory neural signals by decoding murine vagus nerve activity. Proc. Natl. Acad. Sci. 115, E4843–E4852 (2018).
[PMID:
29735654]
Shikano, Y., Nishimura, Y., Okonogi, T., Ikegaya, Y. & Sasaki, T. Vagus nerve spiking activity associated with locomotion and cortical arousal states in a freely moving rat. Eur. J. Neurosci. 49, 1298–1312 (2019).
[PMID:
30450796]
González-González, M. A. et al. Thin film multi-electrode softening cuffs for selective neuromodulation. Sci. Rep. 8, 16390 (2018).
[PMID:
30401906]
Masi, E. B. et al. Identification of hypoglycemia-specific neural signals by decoding murine vagus nerve activity. Bioelectron. Med. 5, 9 (2019).
[PMID:
32232099]
Mathews, K. S. et al. Acute monitoring of genitourinary function using intrafascicular electrodes: selective pudendal nerve activity corresponding to bladder filling, bladder fullness, and genital stimulation. Urology 84, 722–729 (2014).
[PMID:
25168559]
Wark, H. A. C. et al. A new high-density (25 electrodes/mm) penetrating microelectrode array for recording and stimulating sub-millimeter neuroanatomical structures. J. Neural Eng. 10, 045003 (2013).
[PMID:
23723133]
DiBona, G. & Sawin, L. Role of renal alpha-2-adrenergic receptors in spontaneously hypertensive rats. Hypertension 9, 41–48 (1987).
[PMID:
2878879]
DiBona, G. F., Sawin, L. L. & Jones, S. Y. Differentiated sympathetic neural control of the kidney. Am. J. Physiol. 271, R84–R90 (1996).
[PMID:
8760207]
Kozai, T. et al. Ultrasmall implantable composite microelectrodes with bioactive surfaces for chronic neural interfaces. Nat. Mater. 11, 1065–1073 (2012).
[PMID:
23142839]
Patel, P. R. et al. Insertion of linear 8.4 μm diameter 16 channel carbon fiber electrode arrays for single unit recordings. J. Neural Eng. 12, 046009 (2015).
[PMID:
26035638]
Patel, P. R. et al. Chronic in vivo stability assessment of carbon fiber microelectrode arrays. J. Neural Eng. 13, 066002 (2016).
[PMID:
27705958]
Welle, E. J. et al. Ultra-small carbon fiber electrode recording site optimization and improved in vivo chronic recording yield. J. Neural Eng. 17, 026037 (2020).
[PMID:
32209743]
Moffitt, M. A. & McIntyre, C. C. Model-based analysis of cortical recording with silicon microelectrodes. Clin. Neurophysiol. 116, 2240–2250 (2005).
[PMID:
16055377]
Henze, D. A. et al. Intracellular features predicted by extracellular recordings in the hippocampus in vivo. J. Neurophysiol. 84, 390–400 (2000).
[PMID:
10899213]
Yan, D. et al. Microneedle penetrating array with axon-sized dimensions for cuff-less peripheral nerve interfacing. In: 9th International IEEE EMBS Conference on Neural Engineering 827–830 (IEEE, 2019).
Rey, H. G., Pedreira, C. & Quian Quiroga, R. Past, present and future of spike sorting techniques. Brain Res. Bull. 119, 106–117 (2015).
[PMID:
25931392]
Chang, R. B., Strochlic, D. E., Williams, E. K., Umans, B. D. & Liberles, S. D. Vagal sensory neuron subtypes that differentially control breathing. Cell 161, 622–633 (2015).
[PMID:
25892222]
McAllen, R. M., Shafton, A. D., Bratton, B. O., Trevaks, D. & Furness, J. B. Calibration of thresholds for functional engagement of vagal A, B and C fiber groups in vivo. Bioelectron. Med. 1, 21–27 (2018).
[DOI:
10.2217/bem-2017-0001]
Niijima, A. Glucose-sensitive afferent nerve fibers in the liver and their role in food intake and blood glucose regulation. J. Auton. Nerv. Syst. 9, 207–220 (1983).
[PMID:
6663009]
Skovsted, P. & Sapthavichaikul, S. The effects of isoflurane on arterial pressure, pulse rate, autonomic nervous activity, and barostatic reflexes. Can. Anaesth. Soc. J. 24, 304–314 (1977).
[PMID:
871935]
Carli, F., Ronzoni, G., Webster, J., Khan, K. & Elia, M. The independent metabolic effects of halo thane and isoflurane anaesthesia. Acta Anaesthesiol. Scand. 37, 672–678 (1993).
[PMID:
8249557]
Welle, E. J. et al. Fabrication and characterization of a carbon fiber peripheral nerve electrode appropriate for chronic recording. In: Society for Neuroscience 49th Annual Meeting, Chicago, IL (Society for Neuroscience, 2019).
Chaure, F. J., Rey, H. G. & Quian Quiroga, R. A novel and fully automatic spike-sorting implementation with variable number of features. J. Neurophysiol. 120, 1859–1871 (2018).
[PMID:
29995603]