Lung Expression of Human Angiotensin-Converting Enzyme 2 Sensitizes the Mouse to SARS-CoV-2 Infection.

Kun Han, Robert V Blair, Naoki Iwanaga, Fengming Liu, Kasi E Russell-Lodrigue, Zhongnan Qin, Cecily C Midkiff, Nadia A Golden, Lara A Doyle-Meyers, Mohammad E Kabir, Kristin E Chandler, Kellie L Cutrera, Mi Ren, Christopher J Monjure, Gabrielle Lehmicke, Tracy Fischer, Brandon Beddingfield, Alanna G Wanek, Angela Birnbaum, Nicholas J Maness, Chad J Roy, Prasun K Datta, Jay Rappaport, Jay K Kolls, Xuebin Qin
Author Information
  1. Kun Han: Tulane National Primate Research Center, Covington, Louisiana; and.
  2. Robert V Blair: Tulane National Primate Research Center, Covington, Louisiana; and.
  3. Naoki Iwanaga: Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and.
  4. Fengming Liu: Tulane National Primate Research Center, Covington, Louisiana; and.
  5. Kasi E Russell-Lodrigue: Tulane National Primate Research Center, Covington, Louisiana; and.
  6. Zhongnan Qin: Tulane National Primate Research Center, Covington, Louisiana; and.
  7. Cecily C Midkiff: Tulane National Primate Research Center, Covington, Louisiana; and.
  8. Nadia A Golden: Tulane National Primate Research Center, Covington, Louisiana; and.
  9. Lara A Doyle-Meyers: Tulane National Primate Research Center, Covington, Louisiana; and.
  10. Mohammad E Kabir: Tulane National Primate Research Center, Covington, Louisiana; and.
  11. Kristin E Chandler: Tulane National Primate Research Center, Covington, Louisiana; and.
  12. Kellie L Cutrera: Tulane National Primate Research Center, Covington, Louisiana; and.
  13. Mi Ren: Tulane National Primate Research Center, Covington, Louisiana; and.
  14. Christopher J Monjure: Tulane National Primate Research Center, Covington, Louisiana; and.
  15. Gabrielle Lehmicke: Tulane National Primate Research Center, Covington, Louisiana; and.
  16. Tracy Fischer: Tulane National Primate Research Center, Covington, Louisiana; and.
  17. Brandon Beddingfield: Tulane National Primate Research Center, Covington, Louisiana; and. ORCID
  18. Alanna G Wanek: Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and.
  19. Angela Birnbaum: Tulane National Primate Research Center, Covington, Louisiana; and.
  20. Nicholas J Maness: Tulane National Primate Research Center, Covington, Louisiana; and. ORCID
  21. Chad J Roy: Tulane National Primate Research Center, Covington, Louisiana; and. ORCID
  22. Prasun K Datta: Tulane National Primate Research Center, Covington, Louisiana; and.
  23. Jay Rappaport: Tulane National Primate Research Center, Covington, Louisiana; and.
  24. Jay K Kolls: Department of Medicine and Department of Pediatrics, Center for Translational Research in Infection and Inflammation, and.
  25. Xuebin Qin: Tulane National Primate Research Center, Covington, Louisiana; and. ORCID

Abstract

Preclinical mouse models that recapitulate some characteristics of coronavirus disease (COVID-19) will facilitate focused study of pathogenesis and virus-host responses. Human agniotensin-converting enzyme 2 (hACE2) serves as an entry receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) to infect people via binding to envelope spike proteins. Herein we report development and characterization of a rapidly deployable COVID-19 mouse model. C57BL/6J (B6) mice expressing hACE2 in the lung were transduced by oropharyngeal delivery of the recombinant human adenovirus type 5 that expresses hACE2 (Ad5-hACE2). Mice were infected with SARS-CoV-2 at Day 4 after transduction and developed interstitial pneumonia associated with perivascular inflammation, accompanied by significantly higher viral load in lungs at Days 3, 6, and 12 after infection compared with Ad5-empty control group. SARS-CoV-2 was detected in pneumocytes in alveolar septa. Transcriptomic analysis of lungs demonstrated that the infected Ad5-hACE mice had a significant increase in IFN-dependent chemokines and , and genes associated with effector T-cell populations including C. Pathway analysis showed that several Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways were enriched in the data set, including cytokine-cytokine receptor interaction, the chemokine signaling pathway, the NOD-like receptor signaling pathway, the measles pathway, and the IL-17 signaling pathway. This response is correlative to clinical response in lungs of patients with COVID-19. These results demonstrate that expression of hACE2 via adenovirus delivery system sensitized the mouse to SARS-CoV-2 infection and resulted in the development of a mild COVID-19 phenotype, highlighting the immune and inflammatory host responses to SARS-CoV-2 infection. This rapidly deployable COVID-19 mouse model is useful for preclinical and pathogenesis studies of COVID-19.

Keywords

References

  1. J Am Soc Nephrol. 2020 Aug;31(8):1683-1687 [PMID: 32371536]
  2. Nat Med. 2020 Apr;26(4):453-455 [PMID: 32284614]
  3. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  4. Pharmacol Res. 2020 Jul;157:104833 [PMID: 32302706]
  5. Cancer Cell. 2013 Jun 10;23(6):725-38 [PMID: 23707782]
  6. J Clin Invest. 2016 Jun 1;126(6):2321-33 [PMID: 27159394]
  7. Nature. 2020 Jul;583(7818):830-833 [PMID: 32380511]
  8. J Clin Virol. 2020 Jun;127:104361 [PMID: 32344320]
  9. Trends Microbiol. 2006 Jul;14(7):299-303 [PMID: 16759866]
  10. Science. 2020 Aug 14;369(6505):812-817 [PMID: 32434946]
  11. Nature. 2020 May;581(7807):215-220 [PMID: 32225176]
  12. Am J Respir Cell Mol Biol. 2020 Oct;63(4):541-543 [PMID: 32750259]
  13. Emerg Microbes Infect. 2020 Dec;9(1):382-385 [PMID: 32065055]
  14. Nat Med. 2020 Sep;26(9):1428-1434 [PMID: 32661393]
  15. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  16. Nature. 2020 Mar;579(7798):183 [PMID: 32152596]
  17. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  18. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  19. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  20. Cell. 2020 Aug 6;182(3):744-753.e4 [PMID: 32553273]
  21. Clin Infect Dis. 2020 Dec 3;71(9):2428-2446 [PMID: 32215622]
  22. Theranostics. 2020 Jun 12;10(16):7448-7464 [PMID: 32642005]
  23. Sci Rep. 2018 Aug 28;8(1):12983 [PMID: 30154568]
  24. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  25. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  26. Cell Mol Life Sci. 2019 Dec;76(23):4725-4743 [PMID: 31359086]
  27. Nat Commun. 2020 May 8;11(1):2280 [PMID: 32385245]
  28. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  29. J Virol. 2020 Mar 17;94(7): [PMID: 31996437]
  30. Am J Physiol Heart Circ Physiol. 2020 May 1;318(5):H1084-H1090 [PMID: 32228252]
  31. Am J Respir Cell Mol Biol. 2020 Oct;63(4):540-541 [PMID: 32706609]
  32. Am J Respir Cell Mol Biol. 2020 Nov;63(5):707-709 [PMID: 32857620]
  33. Science. 2020 May 29;368(6494):1016-1020 [PMID: 32269068]
  34. Cell. 2020 Aug 6;182(3):734-743.e5 [PMID: 32643603]
  35. Nat Med. 2008 Jan;14(1):98-103 [PMID: 18157141]
  36. Theranostics. 2020 Jun 1;10(16):7163-7177 [PMID: 32641985]
  37. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]

Grants

  1. R35 HL139930/NHLBI NIH HHS
  2. R01 HL141132/NHLBI NIH HHS
  3. P51 OD011104/NIH HHS
  4. P20 GM103629/NIGMS NIH HHS
  5. R01 HL130233/NHLBI NIH HHS
  6. R21 OD024931/NIH HHS

MeSH Term

Adenoviridae
Alveolar Epithelial Cells
Angiotensin-Converting Enzyme 2
Animals
COVID-19
Cytokines
Disease Models, Animal
Gene Expression
Humans
Mice
Mice, Transgenic
SARS-CoV-2
Signal Transduction
Transduction, Genetic

Chemicals

Cytokines
ACE2 protein, human
Angiotensin-Converting Enzyme 2

Word Cloud

Similar Articles

Cited By