Human Pluripotent Stem Cell-Derived Neural Cells and Brain Organoids Reveal SARS-CoV-2 Neurotropism Predominates in Choroid Plexus Epithelium.

Fadi Jacob, Sarshan R Pather, Wei-Kai Huang, Feng Zhang, Samuel Zheng Hao Wong, Haowen Zhou, Beatrice Cubitt, Wenqiang Fan, Catherine Z Chen, Miao Xu, Manisha Pradhan, Daniel Y Zhang, Wei Zheng, Anne G Bang, Hongjun Song, Juan Carlos de la Torre, Guo-Li Ming
Author Information
  1. Fadi Jacob: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  2. Sarshan R Pather: Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  3. Wei-Kai Huang: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  4. Feng Zhang: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  5. Samuel Zheng Hao Wong: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Graduate Program in Cellular and Molecular Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
  6. Haowen Zhou: Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
  7. Beatrice Cubitt: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA.
  8. Wenqiang Fan: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  9. Catherine Z Chen: National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA.
  10. Miao Xu: National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA.
  11. Manisha Pradhan: National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA.
  12. Daniel Y Zhang: Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
  13. Wei Zheng: National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Bethesda, MD 20892, USA.
  14. Anne G Bang: Conrad Prebys Center for Chemical Genomics, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA. Electronic address: abang@sbpdiscovery.org.
  15. Hongjun Song: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: shongjun@pennmedicine.upenn.edu.
  16. Juan Carlos de la Torre: Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA. Electronic address: juanct@scripps.edu.
  17. Guo-Li Ming: Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Institute for Regenerative Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA. Electronic address: gming@pennmedicine.upenn.edu.

Abstract

Neurological complications are common in patients with COVID-19. Although severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causal pathogen of COVID-19, has been detected in some patient brains, its ability to infect brain cells and impact their function is not well understood. Here, we investigated the susceptibility of human induced pluripotent stem cell (hiPSC)-derived monolayer brain cells and region-specific brain organoids to SARS-CoV-2 infection. We found that neurons and astrocytes were sparsely infected, but choroid plexus epithelial cells underwent robust infection. We optimized a protocol to generate choroid plexus organoids from hiPSCs and showed that productive SARS-CoV-2 infection of these organoids is associated with increased cell death and transcriptional dysregulation indicative of an inflammatory response and cellular function deficits. Together, our findings provide evidence for selective SARS-CoV-2 neurotropism and support the use of hiPSC-derived brain organoids as a platform to investigate SARS-CoV-2 infection susceptibility of brain cells, mechanisms of virus-induced brain dysfunction, and treatment strategies.

Keywords

References

  1. Mol Cell. 2020 May 21;78(4):779-784.e5 [PMID: 32362314]
  2. Mol Psychiatry. 2005 Aug;10(8):758-64 [PMID: 15940305]
  3. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  4. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  5. BMC Bioinformatics. 2011 Jan 26;12:35 [PMID: 21269502]
  6. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  7. Proc Natl Acad Sci U S A. 2016 Aug 30;113(35):E5192-201 [PMID: 27519799]
  8. Emerg Infect Dis. 2004 Feb;10(2):342-4 [PMID: 15030709]
  9. EMBO J. 2020 Oct 15;39(20):e106230 [PMID: 32876341]
  10. N Engl J Med. 2020 Aug 6;383(6):590-592 [PMID: 32402155]
  11. PLoS Comput Biol. 2013;9(8):e1003118 [PMID: 23950696]
  12. J Neurosci. 2012 Nov 7;32(45):15934-45 [PMID: 23136431]
  13. Science. 2020 Nov 13;370(6518):856-860 [PMID: 33082293]
  14. Cell Res. 2020 Apr;30(4):343-355 [PMID: 32231345]
  15. Fluids Barriers CNS. 2016 Oct 31;13(1):19 [PMID: 27799072]
  16. Front Neurol. 2021 Jan 20;11:573095 [PMID: 33551947]
  17. IDCases. 2020 Apr 18;20:e00771 [PMID: 32313807]
  18. J Cell Biol. 2015 May 25;209(4):493-506 [PMID: 26008742]
  19. Cell Res. 2020 Mar;30(3):269-271 [PMID: 32020029]
  20. Cell. 2020 Oct 1;183(1):16-27.e1 [PMID: 32882182]
  21. Clin Chem. 2003 Dec;49(12):2108-9 [PMID: 14633896]
  22. Proc Natl Acad Sci U S A. 2015 May 19;112(20):E2725-34 [PMID: 25870293]
  23. Cell. 2016 Jun 16;165(7):1586-1597 [PMID: 27315476]
  24. J Virol. 2008 Aug;82(15):7264-75 [PMID: 18495771]
  25. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  26. Acta Neuropathol. 2018 Mar;135(3):337-361 [PMID: 29368213]
  27. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  28. Front Cell Neurosci. 2015 Mar 12;9:80 [PMID: 25814932]
  29. Nat Commun. 2015 Nov 17;6:8896 [PMID: 26573335]
  30. Virus Res. 2014 Dec 19;194:145-58 [PMID: 25281913]
  31. Life Sci. 2020 Aug 15;255:117839 [PMID: 32450165]
  32. Cell Host Microbe. 2020 Jul 8;28(1):124-133.e4 [PMID: 32485164]
  33. Clin Infect Dis. 2005 Oct 15;41(8):1089-96 [PMID: 16163626]
  34. Proc Natl Acad Sci U S A. 2020 Mar 31;117(13):7001-7003 [PMID: 32165541]
  35. BMC Neurol. 2020 Jun 18;20(1):248 [PMID: 32552792]
  36. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  37. JAMA. 2020 May 12;323(18):1846-1848 [PMID: 32215581]
  38. Lancet Psychiatry. 2020 Oct;7(10):875-882 [PMID: 32593341]
  39. Acta Neuropathol Commun. 2020 Mar 19;8(1):35 [PMID: 32192527]
  40. Nat Med. 2020 Jul;26(7):1077-1083 [PMID: 32405028]
  41. Nat Commun. 2020 Jul 14;11(1):3572 [PMID: 32665677]
  42. Cell. 2020 Aug 6;182(3):685-712.e19 [PMID: 32645325]
  43. Cell Stem Cell. 2016 May 5;18(5):587-90 [PMID: 26952870]
  44. Cell Stem Cell. 2016 Dec 1;19(6):690-702 [PMID: 27912090]
  45. Orphanet J Rare Dis. 2018 Sep 17;13(1):152 [PMID: 30220252]
  46. Brain Behav Immun Health. 2020 May;5:100091 [PMID: 32835294]
  47. JAMA. 2020 May 12;323(18):1848-1849 [PMID: 32215589]
  48. Curr Opin Endocrinol Diabetes Obes. 2014 Oct;21(5):377-83 [PMID: 25122491]
  49. J Virol. 2018 Aug 16;92(17): [PMID: 29925652]
  50. Nature. 2014 Nov 20;515(7527):414-8 [PMID: 25132547]
  51. Emerg Infect Dis. 2020 Jun;26(6):1266-1273 [PMID: 32160149]
  52. N Engl J Med. 2020 Jun 4;382(23):2268-2270 [PMID: 32294339]
  53. Cell. 2016 May 19;165(5):1238-1254 [PMID: 27118425]
  54. J Clin Neurophysiol. 2018 Jan;35(1):e3-e7 [PMID: 28445178]
  55. Neuron. 2017 Apr 19;94(2):337-346.e6 [PMID: 28426967]
  56. Nature. 2020 Jul;583(7818):830-833 [PMID: 32380511]
  57. Science. 2020 Jul 10;369(6500): [PMID: 32527923]
  58. Int J Infect Dis. 2020 May;94:55-58 [PMID: 32251791]
  59. Cell Stem Cell. 2014 Jul 3;15(1):79-91 [PMID: 24996170]
  60. Bioinformatics. 2017 Apr 15;33(8):1179-1186 [PMID: 28088763]
  61. Spinal Cord. 2020 Sep;58(9):1042-1044 [PMID: 32488194]
  62. Nat Med. 2016 Oct;22(10):1101-1107 [PMID: 27571349]
  63. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  64. PLoS Med. 2006 Nov;3(11):e428 [PMID: 17090210]
  65. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  66. Nat Protoc. 2018 Mar;13(3):565-580 [PMID: 29470464]
  67. Sci Rep. 2015 Jun 11;5:11319 [PMID: 26066579]
  68. Neuroscience. 2004;129(4):957-70 [PMID: 15561411]
  69. N Engl J Med. 2020 Sep 3;383(10):989-992 [PMID: 32530583]
  70. Am J Psychiatry. 1999 May;156(5):710-5 [PMID: 10327903]
  71. Nat Rev Neurosci. 2015 Aug;16(8):445-57 [PMID: 26174708]
  72. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 [PMID: 30407594]
  73. Nucleic Acids Res. 2019 Jan 8;47(D1):D330-D338 [PMID: 30395331]
  74. Lancet Neurol. 2020 Sep;19(9):767-783 [PMID: 32622375]
  75. Brain Behav Immun. 2020 Aug;88:945-946 [PMID: 32283294]
  76. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  77. Mol Psychiatry. 2011 Apr;16(4):358-60 [PMID: 21339753]
  78. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  79. Nat Rev Immunol. 2013 Mar;13(3):206-18 [PMID: 23435332]
  80. Cell. 2020 May 14;181(4):905-913.e7 [PMID: 32333836]
  81. Lancet Respir Med. 2020 May;8(5):475-481 [PMID: 32105632]
  82. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]

Grants

  1. R35 NS097370/NINDS NIH HHS
  2. R35 NS116843/NINDS NIH HHS
  3. U19 AI131130/NIAID NIH HHS
  4. U19 MH106434/NIMH NIH HHS

MeSH Term

Animals
Astrocytes
Brain
COVID-19
Cells, Cultured
Choroid Plexus
Gene Expression Regulation
Humans
Neural Stem Cells
Neurons
Organoids
Pluripotent Stem Cells
SARS-CoV-2
Viral Tropism