Genome-Wide Population Structure Analyses of Three Minor Millets: Kodo Millet, Little Millet, and Proso Millet.

Matthew Johnson, Santosh Deshpande, Mani Vetriventhan, Hari D Upadhyaya, Jason G Wallace
Author Information
  1. Matthew Johnson: Johnson Institute of Plant Breeding, Genetics, and Genomics, Univ. of Georgia, 111 Riverbend Rd. Athens, GA.
  2. Santosh Deshpande: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India.
  3. Mani Vetriventhan: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India.
  4. Hari D Upadhyaya: International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502324, Telangana, India.
  5. Jason G Wallace: Johnson Institute of Plant Breeding, Genetics, and Genomics, Univ. of Georgia, 111 Riverbend Rd. Athens, GA.

Abstract

CORE IDEAS: Developed genome-wide SNP marker data for kodo, proso, and little millet Marker data used to analyze genetic diversity Heritability results of various traits used to validate genetic data Millets are a diverse group of small-seeded grains that are rich in nutrients but have received relatively little advanced plant breeding research. Millets are important to smallholder farmers in Africa and Asia because of their short growing season, good stress tolerance, and high nutritional content. To advance the study and use of these species, we present genome-wide marker datasets and population structure analyses for three minor millets: kodo millet (Paspalum scrobiculatum L.), little millet (Panicum sumatrense Roth), and proso millet (Panicum miliaceum L.).We generated genome-wide marker data sets for 190 accessions of each species with genotyping-by-sequencing (GBS). After filtering, we retained between 161 and 165 accessions of each species, with 3461, 2245, and 1882 single-nucleotide polymorphisms (SNPs) for kodo, little, and proso millet, respectively. Population genetic analysis revealed seven putative subpopulations of kodo millet and eight each of proso millet and little millet. To confirm the accuracy of this genetic data, we used public phenotype data on a subset of these accessions to estimate the heritability of various agronomically relevant phenotypes. Heritability values largely agree with the prior expectation for each phenotype, indicating that these SNPs provide an accurate genome-wide sample of genetic variation. These data represent one of first genome-wide population genetics analyses-and the most extensive-in these species and the first genomic analyses of any sort for little millet and kodo millet. These data will be a valuable resource for researchers and breeders trying to improve these crops for smallholder farmers.

References

Alqudah, A.M., Schnurbusch, T.. 2014. Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct. Plant Biol. 41:424. doi:10.1071/FP13248
Baltensperger, D.D. 2002. Progress with proso, pearl and other millets. In: Janick, J.Whipkey, A., editors, Trends in new crops and new uses. ASHS Press, Alexandria, VA. p. 100-103.
Bennetzen, J.L., Schmutz, J., Wang, H., Percifield, R., Hawkins, J., Pontaroli, A.C.. 2012. Reference genome sequence of the model plant Setaria. Nat. Biotechnol. 30:555-561. doi:10.1038/nbt.2196
Bettinger, R.L., Barton, L., Morgan, C.. 2010a. The origins of food production in north China: A different kind of agricultural revolution. Evolutionary Anthropology: Issues. News Rev. (Melb.) 19:9-21.
Bettinger, R.L., Barton, L., Morgan, C., Chen, F., Wang, H., Guilderson, T.P.. 2010b. The transition to agriculture at Dadiwan, People's Republic of China. Curr. Anthropol. 51:703-714. doi:10.1086/655982
Bettinger, R.L., Barton, L., Richerson, P.J., Boyd, R., Wang, H., Choi, W.. 2007. The transition to agriculture in northwestern China. Dev. Quat. Sci. 9:83-101. doi:10.1016/S1571-0866(07)09008-2
Bradbury, P.J., Zhang, Z., Kroon, D.E., Casstevens, T.M., Ramdoss, Y., Buckler, E.S.. 2007. TASSEL: Software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633-2635. doi:10.1093/bioinformatics/btm308
Brown, R.H. 1999. Agronomic implications of C4 photosynthesis. C4 plant biology: 473-507.
Bryant, D., Moulton, V.. 2003. Neighbor-Net: An agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21:255-265. doi:10.1093/molbev/msh018
Buckler, E.S., Holland, J.B., Bradbury, P.J., Acharya, C.B., Brown, P.J., Browne, C.. 2009. The genetic architecture of maize flowering time. Science 325:714-718. doi:10.1126/science.1174276
Cobb, J.N., DeClerck, G., Greenberg, A., Clark, R., McCouch, S.. 2013. Next-generation phenotyping: Requirements and strategies for enhancing our understanding of genotype-phenotype relationships and its relevance to crop improvement. Theor. Appl. Genet. 126:867-887. doi:10.1007/s00122-013-2066-0
Danecek, P., Auton, A., Abecasis, G., Albers, C.A., Banks, E., DePristo, M.A., Handsaker, R.E., Lunter, G., Marth, G.T., Sherry, S.T., McVean, G., Durbin, R., 1000 Genomes Project Analysis Group. 2011. The variant call format and VCFtools. Bioinformatics 27:2156-2158. doi:10.1093/bioinformatics/btr330
deWet, J.M.J., Brink, D.E., Rao, K.E.P., Mengesha, M.H.. 1983. Diversity in Kodo millet, Paspalum scrobiculatum. Econ. Bot. 37:159-163. doi:10.1007/BF02858779
Dwivedi, S., Upadhyaya, H., Senthilvel, S., Hash, C., Fukunaga, K., Diao, X.. 2012. Millets: Genetic and genomic resources. Plant Breed. Rev. 35:247-375. doi:10.1002/9781118100509.ch5
Elshire, R.J., Glaubitz, J.C., Sun, Q., Poland, J.A., Kawamoto, K., Buckler, E.S.. 2011. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379. doi:10.1371/journal.pone.0019379
Glez-Peña, D., Gómez-Blanco, D., Reboiro-Jato, M., Fdez-Riverola, F., Posada, D.. 2010. ALTER: Program-oriented conversion of DNA and protein alignments. Nucleic Acids Res. 38:W14-W18. doi:10.1093/nar/gkq321
Goron, T.L., Raizada, M.N.. 2015. Genetic diversity and genomic resources available for the small millet crops to accelerate a New Green Revolution. Front. Plant Sci. 6. doi:10.3389/fpls.2015.00157
Habiyaremye, C., Matanguihan, J.B., D'Alpoim Guedes, J., Ganjyal, G.M., Whiteman, M.R., Kidwell, K.K.. 2017. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, U.S.: A review. Front. Plant Sci. 7. doi:10.3389/fpls.2016.01961
Hatakeyama, M., Aluri, S., Balachadran, M.T., Sivarajan, S.R., Patrignani, A., Grüter, S.. 2017. Multiple hybrid de novo genome assembly of finger millet, an orphan allotetraploid crop. DNA Res. 25:39-47. doi:10.1093/dnares/dsx036
Hammer, K., Heller, J., Engels, J.. 2001. Monographs on underutilized and neglected crops. Genet. Resour. Crop Evol. 48:3-5. doi:10.1023/A:1011253924058
Hittalmani, S., Mahesh, H.B., Shirke, M.D., Biradar, H., Uday, G., Aruna, Y.R.. 2017. Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics 18:465. doi:10.1186/s12864-017-3850-z
Hunt, H.V., Badakshi, F., Romanova, O., Howe, C.J., Jones, M.K., Heslop-Harrison, J.S.. 2014. Reticulate evolution in Panicum (Poaceae): The origin of tetraploid broomcorn millet, P. miliaceum. J. Exp. Bot. 65:3165-3175. doi:10.1093/jxb/eru161
Hunt, H.V., Campana, M.G., Lawes, M.C., Park, Y.J., Bower, M.A., Howe, C.J.. 2011. Genetic diversity and phylogeography of broomcorn millet (Panicum miliaceum L.) across Eurasia. Mol. Ecol. 20:4756-4771. doi:10.1111/j.1365-294X.2011.05318.x
Hunter, J.D. 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. 9:90-95. doi:10.1109/MCSE.2007.55
Huson, D.H., Bryant, D.. 2005. Application of phylogenetic networks in evolutionary studies. Mol. Biol. Evol. 23:254-267. doi:10.1093/molbev/msj030
Jia, G., Huang, X., Zhi, H., Zhao, Y., Zhao, Q., Li, W.. 2013. A haplotype map of genomic variations and genome-wide association studies of agronomic traits in foxtail millet (Setaria italica). Nat. Genet. 45:957-961. doi:10.1038/ng.2673
Kalinova, J., Moudry, J.. 2006. Content and quality of protein in proso millet (Panicum miliaceum L.) varieties. Plant Foods Hum. Nutr. 61:43. doi:10.1007/s11130-006-0013-9
Khoshbakht, K., Hammer, K.. 2008. How many plant species are cultivated? Genet. Resour. Crop Evol. 55:925-928. doi:10.1007/s10722-008-9368-0
Kubesova, M., Moravcova, L., Suda, J., Jarosik, V., Pysek, P.. 2010. Naturalized plants have smaller genomes than their non-invading relatives: A flow cytometric analysis of the Czech alien flora. PRESLIA-PRAHA 82:81-96.
Kushwaha, H., Jillo, K.W., Singh, V.K., Kumar, A., Yadav, D.. 2014. Assessment of genetic diversity among cereals and millets based on PCR amplification using Dof (DNA binding with One Finger) transcription factor gene-specific primers. Plant Syst. Evol. 301:833-840. doi:10.1007/s00606-014-1095-8
Lu, F., Copenhaver, G.P., Lipka, A.E., Glaubitz, J., Elshire, R., Cherney, J.H.. 2013. Switchgrass genomic diversity, ploidy, and evolution: Novel insights from a network-based SNP discovery protocol. PLoS Genet. 9:e1003215. doi:10.1371/journal.pgen.1003215
Lu, H., Zhang, J., Liu, K.B., Wu, N., Li, Y., Zhou, K.. 2009. Earliest domestication of common millet (Panicum miliaceum) in East Asia extended to 10,000 years ago. Proc. Natl. Acad. Sci. USA 106:7367-7372. doi:10.1073/pnas.0900158106
Ma, X., Feng, F., Wei, H., Mei, H., Xu, K., Chen, S.. 2016. Genome-wide association study for plant height and grain yield in rice under contrasting moisture regimes. Front. Plant Sci. 7. doi:10.3389/fpls.2016.01801
Mace, E.S., Buhariwalla, K.K., Buhariwalla, H.K., Crouch, J.H.. 2003. A high-throughput DNA extraction protocol for tropical molecular breeding programs. Plant Mol. Biol. Report. 21:459-460. doi:10.1007/BF02772596
Mace, E.S., Hunt, C.H., Jordan, D.R.. 2013. Supermodels: Sorghum and maize provide mutual insight into the genetics of flowering time. Theor. Appl. Genet. 126:1377-1395. doi:10.1007/s00122-013-2059-z
McKinney, W. 2010. Data structures for statistical computing in Python. Proceedings of the 9th Python in Science Conference, Austin, TX. 28 June-3 July, 2010. p. 51-56.
Mengesha, M.H. 1966. Chemical composition of teff (Eragrostis tef) compared with that of wheat, barley and grain sorghum. Econ. Bot. 20:268-273. doi:10.1007/BF02904277
Money, D., Gardner, K., Migicovsky, Z., Schwaninger, H., Zhong, G.Y., Myles, S.. 2015. LinkImpute: Fast and accurate genotype imputation for nonmodel organisms. G3: Genes, Genomes, Genet. 5:2383-2390. doi:10.1534/g3.115.021667
Morris, G.P., Ramu, P., Deshpande, S.P., Hash, C.T., Shah, T., Upadhyaya, H.D.. 2012. Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc. Natl. Acad. Sci. USA 110:453-458. doi:10.1073/pnas.1215985110
M'Ribu, H.K., Hilu, K.W.. 1996. Application of random amplified polymorphic DNA to study genetic diversity in Paspalum scrobiculatum L. (Kodo millet, Poaceae). Genet. Resour. Crop Evol. 43:203-210. doi:10.1007/BF00123272
M.S. Swaminathan Research Foundation. 2000. Ninth annual report 1998-99. Centre for Research on Sustainable Agricultural and Rural Development. Chennai, India
Naylor, R.L., Falcon, W.P., Goodman, R.M., Jahn, M.M., Sengooba, T., Tefera, H.. 2004. Biotechnology in the developing world: A case for increased investments in orphan crops. Food Policy 29:15-44. doi:10.1016/j.foodpol.2004.01.002
Oliphant, T.E. 2006. A guide to NumPy, Trelgol Publishing, USA.
Peiffer, J.A., Romay, M.C., Gore, M.A., Flint-Garcia, S.A., Zhang, Z., Millard, M.J.. 2014. The genetic architecture of maize height. Genetics 196:1337-1356. doi:10.1534/genetics.113.159152
Prasad, M., editor. 2017. The foxtail millet genome. Springer, Cham, Switzerland. doi:10.1007/978-3-319-65617-5
Prasada Rao, K., De Wet, J., Gopal Reddy, V., Mengesha, M.. 1993. Diversity in the small millets collection at ICRISAT. In: Riley, K.W.Gupta, S.C.Seetharam, A.Mushonga, J.N., editors, Advances in small millets. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi, India.
Purcell, S., Neale, B., Todd-Brown, K., Thomas, L., Ferreira, M.A.R., Bender, D., Maller, J., Sklar, P., deBakker, P.I.W., Daly, M.J., Sham, P.C.. 2007. PLINK: A toolset for whole-genome association and population-based linkage analysis. Am. J. Hum. Genet. 81:559-575.
Raj, A., Stephens, M., Pritchard, J.K.. 2014. fastSTRUCTURE: Variational inference of population structure in large SNP data sets. Genetics 197:573-589. doi:10.1534/genetics.114.164350
Rajput, S.G., Santra, D.K.. 2016. Evaluation of genetic diversity of proso millet germplasm available in the United States using simple-sequence repeat markers. Crop Sci. 56:2401-2409. doi:10.2135/cropsci2015.10.0644
Roshevits, R.Y. 1980. Grasses: An introduction to the study of fodder and cereal grasses. Springer-Verlag, Heidelberg. doi:10.2307/2806054
Saha, D., Gowda, M.V.C., Arya, L., Verma, M., Bansal, K.C.. 2016. Genetic and genomic resources of small millets. Crit. Rev. Plant Sci. 35:56-79. doi:10.1080/07352689.2016.1147907
Saleh, A.S., Zhang, Q., Chen, J., Shen, Q.. 2013. Millet grains: Nutritional quality, processing, and potential health benefits. Compr. Rev. Food Sci. Food Saf. 12:281-295. doi:10.1111/1541-4337.12012
Sehgal, D., Parida, S.K., Skot, L., Singh, R., Srivastava, R.K., Das, S.P.. 2015. Exploring potential of pearl millet germplasm association panel for association mapping of drought tolerance traits. PLoS One 10:e0122165. doi:10.1371/journal.pone.0122165
Shanahan, J., Anderson, R., Greb, B.. 1988. Productivity and water use of proso millet grown under three crop rotations in the Central Great Plains. Agron. J. 80:487-492. doi:10.2134/agronj1988.00021962008000030019x
Tange, O. 2011. GNU Parallel-The command-line power tool. The USENIX Magazine, February. p. 42-47.
Upadhyaya, H., Dwivedi, S., Singh, S., Singh, S., Vetriventhan, M., Sharma, S.. 2014. Forming core collections in barnyard, kodo, and little millets using morphoagronomic descriptors. Crop Sci. 54:2673-2682. doi:10.2135/cropsci2014.03.0221
Upadhyaya, H., Sharma, S., Gowda, C., Reddy, V.G., Singh, S.. 2011. Developing proso millet (Panicum miliaceum L.) core collection using geographic and morpho-agronomic data. Crop Pasture Sci. 62:383-389. doi:10.1071/CP10294
Varshney, R.K., Ribaut, J.M., Buckler, E.S., Tuberosa, R., Rafalski, J.A., Langridge, P.. 2012. Can genomics boost productivity of orphan crops? Nat. Biotechnol. 30:1172-1176. doi:10.1038/nbt.2440
Varshney, R.K., Shi, C., Thudi, M., Mariac, C., Wallace, J., Qi, P.. 2017. Pearl millet genome sequence provides a resource to improve agronomic traits in arid environments. Nat. Biotechnol. 35:969-976. doi:10.1038/nbt.3943
Vetriventhan, M., Upadhyaya, H.D.. 2018. Diversity and trait-specific sources for productivity and nutritional traits in the global proso millet (Panicum miliaceum L.) germplasm collection. Crop J. 6:451-463. doi:10.1016/j.cj.2018.04.002
Wallace, J.G., Mitchell, S.E.. 2017. Genotyping-by-sequencing. Curr. Protoc. Plant Biol. 2:64-77. doi:10.1002/cppb.20042
Yadav, Y., Lavanya, G.R., Pandey, S., Verma, M., Ram, C., Arya, L.. 2016. Neutral and functional marker based genetic diversity in kodo millet (Paspalum scrobiculatum L.). Acta Physiol. Plant. 38. doi:10.1007/s11738-016-2090-1
Yue, H., Wang, L., Liu, H., Yue, W., Du, X., Song, W.. 2016. De novo assembly and characterization of the transcriptome of broomcorn millet (Panicum miliaceum L.) for gene discovery and marker development. Front. Plant Sci. 7. doi:10.3389/fpls.2016.01083
Zhang, G., Liu, X., Quan, Z., Cheng, S., Xu, X., Pan, S.. 2012. Genome sequence of foxtail millet (Setaria italica) provides insights into grass evolution and biofuel potential. Nat. Biotechnol. 30:549-554. doi:10.1038/nbt.2195
Zhao, Z. 2005. Palaeoethnobotany and its new achievements in China. Kaogu (Archaeology) 7:e49.
Zou, C., Li, L., Miki, D., Li, D., Tang, Q., Xiao, L.. 2019. The genome of broomcorn millet. Nat. Commun. 10:436. doi:10.1038/s41467-019-08409-5

MeSH Term

Africa
Asia
Millets
Panicum
Paspalum

Word Cloud

Similar Articles

Cited By