Non-Human Primate Blood-Brain Barrier and In Vitro Brain Endothelium: From Transcriptome to the Establishment of a New Model.

Catarina Chaves, Tuan-Minh Do, Céline Cegarra, Valérie Roudières, Sandrine Tolou, Gilbert Thill, Corinne Rocher, Michel Didier, Dominique Lesuisse
Author Information
  1. Catarina Chaves: Rare and Neurologic Diseases Research Therapeutic Area, Sanofi R&D, 91385 Chilly-Mazarin, France.
  2. Tuan-Minh Do: Rare and Neurologic Diseases Research Therapeutic Area, Sanofi R&D, 91385 Chilly-Mazarin, France.
  3. Céline Cegarra: Rare and Neurologic Diseases Research Therapeutic Area, Sanofi R&D, 91385 Chilly-Mazarin, France.
  4. Valérie Roudières: Rare and Neurologic Diseases Research Therapeutic Area, Sanofi R&D, 91385 Chilly-Mazarin, France.
  5. Sandrine Tolou: Translational Sciences Unit, Sanofi R&D, 91385 Chilly-Mazarin, France.
  6. Gilbert Thill: Translational Sciences Unit, Sanofi R&D, 91385 Chilly-Mazarin, France.
  7. Corinne Rocher: Translational Sciences Unit, Sanofi R&D, 91385 Chilly-Mazarin, France.
  8. Michel Didier: Translational Sciences Unit, Sanofi R&D, 91385 Chilly-Mazarin, France.
  9. Dominique Lesuisse: Rare and Neurologic Diseases Research Therapeutic Area, Sanofi R&D, 91385 Chilly-Mazarin, France.

Abstract

The non-human primate (NHP)-brain endothelium constitutes an essential alternative to human in the prediction of molecule trafficking across the blood-brain barrier (BBB). This study presents a comparison between the NHP transcriptome of freshly isolated brain microcapillaries and in vitro-selected brain endothelial cells (BECs), focusing on important BBB features, namely tight junctions, receptors mediating transcytosis (RMT), ABC and SLC transporters, given its relevance as an alternative model for the molecule trafficking prediction across the BBB and identification of new brain-specific transport mechanisms. In vitro BECs conserved most of the BBB key elements for barrier integrity and control of molecular trafficking. The function of RMT via the transferrin receptor (TFRC) was characterized in this NHP-BBB model, where both human transferrin and anti-hTFRC antibody showed increased apical-to-basolateral passage in comparison to control molecules. In parallel, eventual BBB-related regional differences were investigated in seven-day in vitro-selected BECs from five brain structures: brainstem, cerebellum, cortex, hippocampus, and striatum. Our analysis retrieved few differences in the brain endothelium across brain regions, suggesting a rather homogeneous BBB function across the brain parenchyma. The presently established NHP-derived BBB model closely mimics the physiological BBB, thus representing a ready-to-use tool for assessment of the penetration of biotherapeutics into the human CNS.

Keywords

References

  1. Neurochem Res. 2017 Mar;42(3):795-809 [PMID: 27503090]
  2. J Neurochem. 2018 Sep;146(6):670-685 [PMID: 29675872]
  3. FASEB J. 2017 May;31(5):1807-1827 [PMID: 28108572]
  4. Fluids Barriers CNS. 2020 Apr 22;17(1):30 [PMID: 32321511]
  5. Mol Psychiatry. 2016 Nov;21(11):1527-1536 [PMID: 26809840]
  6. J Cell Biol. 2008 Nov 3;183(3):409-17 [PMID: 18955553]
  7. J Pharmacol Exp Ther. 2009 May;329(2):558-70 [PMID: 19179540]
  8. Cell Mol Neurobiol. 2005 Feb;25(1):5-23 [PMID: 15962506]
  9. Curr Biol. 2006 May 23;16(10):R356-8 [PMID: 16618540]
  10. Neuron. 2015 Jan 21;85(2):296-302 [PMID: 25611508]
  11. Br J Cancer. 2011 Nov 22;105(11):1697-707 [PMID: 22027709]
  12. Neuron. 2014 Jan 8;81(1):49-60 [PMID: 24411731]
  13. J Cereb Blood Flow Metab. 2009 Sep;29(9):1491-502 [PMID: 19491922]
  14. Sci Rep. 2018 Jun 11;8(1):8868 [PMID: 29892006]
  15. Biochim Biophys Acta. 1975 Aug 5;401(1):128-36 [PMID: 1148286]
  16. Pharm Res. 2013 Oct;30(10):2523-37 [PMID: 24137801]
  17. Nature. 2016 Jul 13;535(7612):367-75 [PMID: 27409810]
  18. Nat Rev Mol Cell Biol. 2011 Jul 22;12(8):517-33 [PMID: 21779028]
  19. PLoS One. 2010 Oct 29;5(10):e13741 [PMID: 21060791]
  20. Pain. 2017 Apr;158(4):660-668 [PMID: 28009628]
  21. Proc Natl Acad Sci U S A. 1999 Oct 12;96(21):12079-84 [PMID: 10518579]
  22. Neuroimage. 2016 Sep;138:134-140 [PMID: 27211474]
  23. Sci Rep. 2020 Feb 28;10(1):3685 [PMID: 32111886]
  24. Brain Res. 2015 Jan 12;1594:15-26 [PMID: 25451130]
  25. Pharm Res. 2003 Jun;20(6):904-9 [PMID: 12817896]
  26. Nature. 2014 May 22;509(7501):507-11 [PMID: 24828040]
  27. Dev Cell. 2014 Oct 27;31(2):248-56 [PMID: 25373781]
  28. Nat Rev Mol Cell Biol. 2018 May;19(5):313-326 [PMID: 29410531]
  29. Neuron. 2012 Mar 22;73(6):1083-99 [PMID: 22445337]
  30. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  31. Neuron. 2017 May 3;94(3):581-594.e5 [PMID: 28416077]
  32. Biochim Biophys Acta Mol Cell Biol Lipids. 2017 Jun;1862(6):573-588 [PMID: 28315462]
  33. Sci Transl Med. 2014 Nov 5;6(261):261ra154 [PMID: 25378646]
  34. Rev Neurosci. 2014;25(2):247-54 [PMID: 24501156]
  35. J Neurochem. 2017 Mar;140(6):874-888 [PMID: 27935037]
  36. J Pharmacol Exp Ther. 2004 Oct;311(1):92-8 [PMID: 15173314]
  37. Mol Pharm. 2016 Dec 5;13(12):4191-4198 [PMID: 27934481]
  38. Genome Res. 2004 Aug;14(8):1462-73 [PMID: 15289471]
  39. J Neurochem. 1982 Mar;38(3):705-17 [PMID: 7057189]
  40. Bioinformatics. 2003 Feb 12;19(3):368-75 [PMID: 12584122]
  41. Mol Pharm. 2013 Jan 7;10(1):289-96 [PMID: 23137377]
  42. J Neurochem. 1989 Nov;53(5):1363-71 [PMID: 2571674]
  43. J Pharmacol Exp Ther. 2002 Jul;302(1):225-31 [PMID: 12065721]
  44. Biochim Biophys Acta. 1975 Mar 25;382(3):377-92 [PMID: 1125240]
  45. J Cell Biol. 2002 Mar 18;156(6):1099-111 [PMID: 11889141]
  46. Neuroscience. 2004;129(2):349-60 [PMID: 15501592]
  47. Sci Rep. 2016 Oct 11;6:35108 [PMID: 27725773]
  48. J Neurochem. 2005 Apr;93(2):279-89 [PMID: 15816851]
  49. J Pharm Sci. 2011 Sep;100(9):3939-50 [PMID: 21254069]
  50. Bioconjug Chem. 2017 Apr 19;28(4):995-1004 [PMID: 28355061]
  51. J Pharmacol Exp Ther. 1993 Dec;267(3):1085-90 [PMID: 8263769]
  52. J Neurochem. 1993 May;60(5):1956-9 [PMID: 8473910]
  53. Neurobiol Dis. 2004 Jun;16(1):1-13 [PMID: 15207256]
  54. Cell Rep. 2019 Nov 5;29(6):1690-1706.e4 [PMID: 31693905]
  55. Elife. 2014 Sep 17;3:e03970 [PMID: 25232658]
  56. J Histochem Cytochem. 2009 Jun;57(6):523-9 [PMID: 19153196]
  57. J Neurochem. 2010 Feb;112(3):625-35 [PMID: 19895664]
  58. Science. 2008 Nov 21;322(5905):1247-50 [PMID: 19023080]
  59. Brain Res. 2009 Jan 16;1249:34-42 [PMID: 18996096]
  60. J Cereb Blood Flow Metab. 2008 Jan;28(1):135-48 [PMID: 17565361]
  61. Neuron. 2016 Jan 6;89(1):37-53 [PMID: 26687838]
  62. J Cereb Blood Flow Metab. 2016 May;36(5):862-90 [PMID: 26868179]
  63. J Neurochem. 2011 Apr;117(2):333-45 [PMID: 21291474]
  64. J Cereb Blood Flow Metab. 2017 Dec;37(12):3683-3694 [PMID: 28273726]
  65. PLoS One. 2012;7(5):e38149 [PMID: 22675443]
  66. Nat Genet. 2003 Jul;34(3):267-73 [PMID: 12808457]
  67. J Pharm Sci. 2013 Sep;102(9):3343-55 [PMID: 23650139]
  68. J Cell Sci. 2011 Feb 15;124(Pt 4):548-55 [PMID: 21245199]
  69. Acta Neuropathol. 2002 Jul;104(1):85-91 [PMID: 12070669]
  70. MAbs. 2018 Jul;10(5):765-777 [PMID: 29771629]
  71. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  72. Nat Neurosci. 2019 Nov;22(11):1892-1902 [PMID: 31611708]
  73. Stem Cells Dev. 2017 Jun 15;26(12):857-874 [PMID: 28398169]
  74. J Clin Invest. 2014 Sep;124(9):3825-46 [PMID: 25083995]
  75. Biochim Biophys Acta. 2005 Dec 30;1746(3):349-63 [PMID: 16440447]
  76. Pflugers Arch. 2015 Jul;467(7):1481-1493 [PMID: 25132355]
  77. FASEB J. 2014 Nov;28(11):4764-78 [PMID: 25070367]
  78. Front Neurosci. 2015 Oct 27;9:390 [PMID: 26578857]
  79. Clin Pharmacol Ther. 2013 Dec;94(6):636-9 [PMID: 24013810]
  80. Adv Pharmacol. 2014;71:301-35 [PMID: 25307221]
  81. Neuron. 2016 Jan 6;89(1):70-82 [PMID: 26687840]
  82. J Exp Med. 2014 Feb 10;211(2):233-44 [PMID: 24470444]
  83. J Neurochem. 2005 Nov;95(4):1201-14 [PMID: 16271053]
  84. Fluids Barriers CNS. 2012 Nov 09;9(1):23 [PMID: 23140302]
  85. Nat Protoc. 2010 Jul;5(7):1265-72 [PMID: 20595955]
  86. Mol Pharm. 2011 Aug 1;8(4):1332-41 [PMID: 21707071]
  87. J Cereb Blood Flow Metab. 1985 Dec;5(4):545-53 [PMID: 3877064]
  88. Metabolism. 1987 Sep;36(9):892-5 [PMID: 3306281]
  89. J Neural Transm (Vienna). 2020 Aug;127(8):1117-1124 [PMID: 32382826]
  90. Nat Rev Drug Discov. 2016 Apr;15(4):275-92 [PMID: 26794270]
  91. PLoS One. 2019 Dec 18;14(12):e0226302 [PMID: 31851695]
  92. J Biol Chem. 1990 Oct 15;265(29):18035-40 [PMID: 2211679]
  93. Cell. 2012 Apr 13;149(2):483-96 [PMID: 22500809]
  94. Bioinformatics. 2012 Jul 15;28(14):1933-4 [PMID: 22592379]
  95. Fluids Barriers CNS. 2020 Mar 30;17(1):25 [PMID: 32228708]
  96. J Cell Biol. 2003 May 12;161(3):653-60 [PMID: 12743111]
  97. Biotechnol Bioeng. 2007 Feb 1;96(2):381-91 [PMID: 16937408]
  98. Nature. 1984 Nov 8-14;312(5990):162-3 [PMID: 6095085]
  99. PLoS One. 2014 Apr 30;9(4):e96340 [PMID: 24788759]
  100. Stem Cells. 2018 Dec;36(12):1816-1827 [PMID: 30171748]
  101. Mol Biol Cell. 2015 Feb 15;26(4):740-50 [PMID: 25540431]
  102. Pharm Res. 1995 Jun;12(6):807-16 [PMID: 7667183]
  103. Nat Rev Drug Discov. 2007 Aug;6(8):650-61 [PMID: 17667956]
  104. Eur J Pharm Sci. 2017 May 30;103:47-51 [PMID: 28188910]
  105. J Clin Invest. 2014 Mar;124(3):1199-213 [PMID: 24531547]
  106. Sci Data. 2018 Aug 21;5:180160 [PMID: 30129931]
  107. Curr Pharm Des. 2014;20(10):1450-62 [PMID: 23789951]
  108. Biol Pharm Bull. 2004 Sep;27(9):1437-40 [PMID: 15340233]

Word Cloud

Similar Articles

Cited By