Ariza AC, Deen PM, Robben JH. The succinate receptor as a novel therapeutic target for oxidative and metabolic stress-related conditions. Front Endocrinol. 2012;3:22.
Krebs HA. Rate control of the tricarboxylic acid cycle. Adv Enzyme Regul. 1970;8:335-353.
Sapieha P, Sirinyan M, Hamel D, et al. The succinate receptor GPR91 in neurons has a major role in retinal angiogenesis. Nature Med. 2008;14(10):1067-1076.
Toma I, Kang JJ, Sipos A, et al. Succinate receptor GPR91 provides a direct link between high glucose levels and renin release in murine and rabbit kidney. J Clin Investig. 2008;118(7):2526-2534.
He W, Miao FJ-P, Lin DC-H, et al. Citric acid cycle intermediates as ligands for orphan G-protein-coupled receptors. Nature. 2004;429(6988):188-193.
Davili Z, Johar S, Hughes C, Kveselis D, Hoo J. Succinate dehydrogenase deficiency associated with dilated cardiomyopathy and ventricular noncompaction. Eur J Pediatr. 2007;166(8):867-870.
Pajor A. Molecular properties of sodium/dicarboxylate cotransporters. J Membr Biol. 2000;175(1):1-8.
Gilissen J, Jouret F, Pirotte B, Hanson JJP. Insight into SUCNR1 (GPR91) structure and function. Pharmacol Ther. 2016;159:56-65.
Mossa A, Velasquez Flores M, Nguyen H, Cammisotto PG, Campeau L. Beta-3 adrenoceptor signaling pathways in urothelial and smooth muscle cells in the presence of succinate. J Pharmacol Exp Ther. 2018;367(2):252-259.
Mossa AH, Velasquez Flores M, Cammisotto PG, Campeau L. Succinate, increased in metabolic syndrome, activates GPR91 receptor signaling in urothelial cells. Cell Signal. 2017;37:31-39.
Mills E, O'Neill L. Succinate: a metabolic signal in inflammation. Trends Cell Biol. 2013;20:1-8.
Velasquez Flores M, Mossa AH, Cammisotto P, Campeau L. Succinate decreases bladder function in a rat model associated with metabolic syndrome. Neurourol Urodyn. 2018;37(5):1549-1558.
Murphy MP, O'Neill LA. Krebs cycle reimagined: the emerging roles of succinate and itaconate as signal transducers. Cell. 2018;174(4):780-784.
Grisham MB, Johnson GG, Lancaster JR. Quantitation of nitrate and nitrite in extracellular fluids. Methods Enzymol. 1996;268(A):237-246.
Rubic T, Lametschwandtner G, Jost S, et al. Triggering the succinate receptor GPR91 on dendritic cells enhances immunity. Nature Immunol. 2008;9(11):1261-1269.
Burnstock G. Purinergic signalling in the urinary tract in health and disease. Purinergic Signal. 2014;10(1):103-155.
Leite LN, Gonzaga NA, Simplicio JA, et al. Pharmacological characterization of the mechanisms underlying the vascular effects of succinate. Eur J Pharmacol. 2016;789:334-343.
Palmer RM, Ferrige A, Moncada SJN. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987;327(6122):524-526.
Birder LA, Nealen ML, Kiss S, et al. β-Adrenoceptor agonists stimulate endothelial nitric oxide synthase in rat urinary bladder urothelial cells. J Neurosci. 2002;22(18):8063-8070.
Satake Y, Satoh K, Nogi M, et al. Crucial roles of nitric oxide synthases in β-adrenoceptor-mediated bladder relaxation in mice. Am J Physiol Renal Physiol. 2016;312(1):F33-F42.
Matsumoto-Miyai K, Yamada E, Yoshizumi M, Kawatani M. The regulation of distention-induced ATP release from urothelium by the adenylyl cyclase-cyclic AMP pathway. Biomed Res. 2012;33(3):153-157.
Kullmann FA, Daugherty SL, de Groat WC, Birder LA. Bladder smooth muscle strip contractility as a method to evaluate lower urinary tract pharmacology. J Vis Exp. 2014;(90):e51807.
Abrams P. Describing bladder storage function: overactive bladder syndrome and detrusor overactivity. Urology. 2003;62(5):28-37.
McCreath KJ, Espada S, Gálvez BG, et al. Targeted disruption of the SUCNR1 metabolic receptor leads to dichotomous effects on obesity. Diabetes. 2015;64(4):1154-1167.
Grimolizzi F, Arranz L. Multiple faces of succinate beyond metabolism in blood. Haematologica. 2018;103(10):1586-1592.