Upper airway gene expression reveals suppressed immune responses to SARS-CoV-2 compared with other respiratory viruses.

Eran Mick, Jack Kamm, Angela Oliveira Pisco, Kalani Ratnasiri, Jennifer M Babik, Gloria Castañeda, Joseph L DeRisi, Angela M Detweiler, Samantha L Hao, Kirsten N Kangelaris, G Renuka Kumar, Lucy M Li, Sabrina A Mann, Norma Neff, Priya A Prasad, Paula Hayakawa Serpa, Sachin J Shah, Natasha Spottiswoode, Michelle Tan, Carolyn S Calfee, Stephanie A Christenson, Amy Kistler, Charles Langelier
Author Information
  1. Eran Mick: Division of Infectious Diseases, University of California, San Francisco, CA, USA. ORCID
  2. Jack Kamm: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  3. Angela Oliveira Pisco: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  4. Kalani Ratnasiri: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  5. Jennifer M Babik: Division of Infectious Diseases, University of California, San Francisco, CA, USA.
  6. Gloria Castañeda: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  7. Joseph L DeRisi: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  8. Angela M Detweiler: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  9. Samantha L Hao: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  10. Kirsten N Kangelaris: Division of Hospital Medicine, University of California, San Francisco, CA, USA.
  11. G Renuka Kumar: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  12. Lucy M Li: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  13. Sabrina A Mann: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  14. Norma Neff: Chan Zuckerberg Biohub, San Francisco, CA, USA. ORCID
  15. Priya A Prasad: Division of Hospital Medicine, University of California, San Francisco, CA, USA.
  16. Paula Hayakawa Serpa: Division of Infectious Diseases, University of California, San Francisco, CA, USA.
  17. Sachin J Shah: Division of Hospital Medicine, University of California, San Francisco, CA, USA.
  18. Natasha Spottiswoode: Division of Hospital Medicine, University of California, San Francisco, CA, USA.
  19. Michelle Tan: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  20. Carolyn S Calfee: Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA.
  21. Stephanie A Christenson: Division of Pulmonary and Critical Care Medicine, University of California, San Francisco, CA, USA.
  22. Amy Kistler: Chan Zuckerberg Biohub, San Francisco, CA, USA.
  23. Charles Langelier: Division of Infectious Diseases, University of California, San Francisco, CA, USA. chaz.langelier@ucsf.edu. ORCID

Abstract

SARS-CoV-2 infection is characterized by peak viral load in the upper airway prior to or at the time of symptom onset, an unusual feature that has enabled widespread transmission of the virus and precipitated a global pandemic. How SARS-CoV-2 is able to achieve high titer in the absence of symptoms remains unclear. Here, we examine the upper airway host transcriptional response in patients with COVID-19 (n = 93), other viral (n = 41) or non-viral (n = 100) acute respiratory illnesses (ARIs). Compared with other viral ARIs, COVID-19 is characterized by a pronounced interferon response but attenuated activation of other innate immune pathways, including toll-like receptor, interleukin and chemokine signaling. The IL-1 and NLRP3 inflammasome pathways are markedly less responsive to SARS-CoV-2, commensurate with a signature of diminished neutrophil and macrophage recruitment. This pattern resembles previously described distinctions between symptomatic and asymptomatic viral infections and may partly explain the propensity for pre-symptomatic transmission in COVID-19. We further use machine learning to build 27-, 10- and 3-gene classifiers that differentiate COVID-19 from other ARIs with AUROCs of 0.981, 0.954 and 0.885, respectively. Classifier performance is stable across a wide range of viral load, suggesting utility in mitigating false positive or false negative results of direct SARS-CoV-2 tests.

References

  1. Clin Infect Dis. 2020 Jul 28;71(15):889-890 [PMID: 32215618]
  2. J Stat Softw. 2010;33(1):1-22 [PMID: 20808728]
  3. Nucleic Acids Res. 2014 Jan;42(Database issue):D472-7 [PMID: 24243840]
  4. Nat Med. 2020 Oct;26(10):1609-1615 [PMID: 32747830]
  5. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  6. Nat Methods. 2015 May;12(5):453-7 [PMID: 25822800]
  7. Int Forum Allergy Rhinol. 2020 Aug;10(8):944-950 [PMID: 32301284]
  8. BMC Biotechnol. 2016 Jun 24;16(1):54 [PMID: 27342544]
  9. Lancet Infect Dis. 2020 May;20(5):533-534 [PMID: 32087114]
  10. Clin Exp Immunol. 2011 Oct;166(1):1-15 [PMID: 21762124]
  11. Genome Biol. 2019 Nov 28;20(1):257 [PMID: 31779668]
  12. Sci Transl Med. 2016 Jan 20;8(322):322ra11 [PMID: 26791949]
  13. Proc Natl Acad Sci U S A. 2018 Dec 26;115(52):E12353-E12362 [PMID: 30482864]
  14. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  15. PLoS Genet. 2011 Aug;7(8):e1002234 [PMID: 21901105]
  16. Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17513-17515 [PMID: 32632012]
  17. Lancet. 2003 May 24;361(9371):1767-72 [PMID: 12781535]
  18. Cytokine Growth Factor Rev. 2011 Aug;22(4):189-95 [PMID: 22019906]
  19. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  20. Nat Biotechnol. 2016 May;34(5):525-7 [PMID: 27043002]
  21. Int J Infect Dis. 2020 Oct;99:403-407 [PMID: 32771633]
  22. N Engl J Med. 2020 May 28;382(22):2158-2160 [PMID: 32329972]
  23. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  24. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  25. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  26. PLoS One. 2019 Jun 20;14(6):e0218318 [PMID: 31220115]
  27. Nat Microbiol. 2020 Mar;5(3):443-454 [PMID: 31932713]
  28. Microbes Infect. 2018 Jun - Jul;20(6):346-352 [PMID: 29842983]
  29. Nat Genet. 2020 Dec;52(12):1294-1302 [PMID: 33077915]
  30. Nat Commun. 2021 Mar 12;12(1):1660 [PMID: 33712587]
  31. F1000Res. 2015 Dec 30;4:1521 [PMID: 26925227]
  32. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  33. N Engl J Med. 2020 Mar 19;382(12):1177-1179 [PMID: 32074444]
  34. Nat Rev Immunol. 2020 May;20(5):269-270 [PMID: 32273594]
  35. Gigascience. 2020 Oct 15;9(10): [PMID: 33057676]
  36. Res Vet Sci. 2019 Apr;123:39-46 [PMID: 30583231]
  37. N Engl J Med. 2020 May 28;382(22):2081-2090 [PMID: 32329971]
  38. Nat Commun. 2020 Oct 8;11(1):5086 [PMID: 33033248]
  39. J Clin Invest. 2012 Sep;122(9):3211-20 [PMID: 22886303]
  40. Biochem Biophys Res Commun. 2018 Jan 1;495(1):116-123 [PMID: 29107693]
  41. Nat Genet. 2020 Dec;52(12):1283-1293 [PMID: 33077916]
  42. J Immunol. 1999 Jun 15;162(12):7322-9 [PMID: 10358182]
  43. Nat Med. 2020 May;26(5):672-675 [PMID: 32296168]
  44. PLoS One. 2019 Jan 10;14(1):e0206194 [PMID: 30629604]
  45. Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2 [PMID: 32407669]
  46. Lancet Infect Dis. 2020 May;20(5):565-574 [PMID: 32213337]
  47. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  48. JAMA Intern Med. 2020 Jul 1;180(7):934-943 [PMID: 32167524]
  49. JAMA. 2020 May 12;323(18):1843-1844 [PMID: 32159775]
  50. Bioinformatics. 2018 Sep 15;34(18):3094-3100 [PMID: 29750242]
  51. N Engl J Med. 2020 Mar 5;382(10):970-971 [PMID: 32003551]
  52. Nature. 2020 Aug;584(7821):425-429 [PMID: 32604404]

Grants

  1. K23 HL123778/NHLBI NIH HHS
  2. K23 HL138461/NHLBI NIH HHS
  3. R35 HL140026/NHLBI NIH HHS

MeSH Term

Betacoronavirus
COVID-19
COVID-19 Testing
Clinical Laboratory Techniques
Coronavirus Infections
Diagnosis, Differential
Gene Expression
Host-Pathogen Interactions
Humans
Immunity, Innate
Nasopharynx
Pandemics
Pneumonia, Viral
Respiratory Tract Infections
SARS-CoV-2
Sensitivity and Specificity
Viral Load