Macrophage expression and prognostic significance of the long pentraxin PTX3 in COVID-19.

Enrico Brunetta, Marco Folci, Barbara Bottazzi, Maria De Santis, Giuseppe Gritti, Alessandro Protti, Sarah N Mapelli, Stefanos Bonovas, Daniele Piovani, Roberto Leone, Ilaria My, Veronica Zanon, Gianmarco Spata, Monica Bacci, Domenico Supino, Silvia Carnevale, Marina Sironi, Sadaf Davoudian, Clelia Peano, Francesco Landi, Fabiano Di Marco, Federico Raimondi, Andrea Gianatti, Claudio Angelini, Alessandro Rambaldi, Cecilia Garlanda, Michele Ciccarelli, Maurizio Cecconi, Alberto Mantovani
Author Information
  1. Enrico Brunetta: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  2. Marco Folci: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  3. Barbara Bottazzi: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  4. Maria De Santis: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  5. Giuseppe Gritti: Unit of Hematology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy. ORCID
  6. Alessandro Protti: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  7. Sarah N Mapelli: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  8. Stefanos Bonovas: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  9. Daniele Piovani: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  10. Roberto Leone: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  11. Ilaria My: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  12. Veronica Zanon: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  13. Gianmarco Spata: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  14. Monica Bacci: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  15. Domenico Supino: Department of Biomedical Sciences, Humanitas University, Milan, Italy.
  16. Silvia Carnevale: Department of Biomedical Sciences, Humanitas University, Milan, Italy.
  17. Marina Sironi: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  18. Sadaf Davoudian: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  19. Clelia Peano: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. ORCID
  20. Francesco Landi: Unit of Hematology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
  21. Fabiano Di Marco: Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
  22. Federico Raimondi: Unit of Pneumology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
  23. Andrea Gianatti: Unit of Pathology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy. ORCID
  24. Claudio Angelini: Humanitas Clinical and Research Center-IRCCS, Milan, Italy.
  25. Alessandro Rambaldi: Unit of Hematology, Azienda Ospedaliera Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy. arambaldi@asst-pg23.it. ORCID
  26. Cecilia Garlanda: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. cecilia.garlanda@humanitasresearch.it. ORCID
  27. Michele Ciccarelli: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. michele.ciccarelli@humanitas.it. ORCID
  28. Maurizio Cecconi: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. maurizio.cecconi@humanitas.it. ORCID
  29. Alberto Mantovani: Humanitas Clinical and Research Center-IRCCS, Milan, Italy. alberto.mantovani@humanitasresearch.it. ORCID

Abstract

Long pentraxin 3 (PTX3) is an essential component of humoral innate immunity, involved in resistance to selected pathogens and in the regulation of inflammation. The present study was designed to assess the presence and significance of PTX3 in Coronavirus Disease 2019 (COVID-19). RNA-sequencing analysis of peripheral blood mononuclear cells, single-cell bioinformatics analysis and immunohistochemistry of lung autopsy samples revealed that myelomonocytic cells and endothelial cells express high levels of PTX3 in patients with COVID-19. Increased plasma concentrations of PTX3 were detected in 96 patients with COVID-19. PTX3 emerged as a strong independent predictor of 28-d mortality in multivariable analysis, better than conventional markers of inflammation, in hospitalized patients with COVID-19. The prognostic significance of PTX3 abundance for mortality was confirmed in a second independent cohort (54 patients). Thus, circulating and lung myelomonocytic cells and endothelial cells are a major source of PTX3, and PTX3 plasma concentration can serve as an independent strong prognostic indicator of short-term mortality in COVID-19.

References

  1. Garlanda, C., Bottazzi, B., Magrini, E., Inforzato, A. & Mantovani, A. PTX3, a humoral pattern recognition molecule, in innate immunity, tissue repair and cancer. Physiol. Rev. 98, 623–639 (2018). [PMID: 29412047]
  2. Bottazzi, B., Doni, A., Garlanda, C. & Mantovani, A. An integrated view of humoral innate immunity: pentraxins as a paradigm. Annu. Rev. Immunol. 28, 157–183 (2010). [PMID: 19968561]
  3. Pepys, M. B. The pentraxins 1975–2018: serendipity, diagnostics and drugs. Front. Immunol. 9, 2382 (2018). [PMID: 30459761]
  4. Wu, F. et al. A new coronavirus associated with human respiratory disease in China. Nature 579, 265–269 (2020). [PMID: 32015508]
  5. Zhu, N. et al. A novel coronavirus from patients with pneumonia in China, 2019. N. Engl. J. Med. 382, 727–733 (2020). [PMID: 31978945]
  6. Fauci, A. S., Lane, H. C. & Redfield, R. R. COVID-19—navigating the uncharted. N. Engl. J. Med. 382, 1268–1269 (2020). [PMID: 32109011]
  7. Cecconi, M., Forni, G. & Mantovani, A. Ten things we learned about COVID-19. Intensive Care Med. 46, 1590–1593 (2020). [PMID: 32504103]
  8. Ackermann, M. et al. Pulmonary vascular endothelialitis, thrombosis and angiogenesis in COVID-19. N. Engl. J. Med. 383, 120–128 (2020). [PMID: 32437596]
  9. Varga, Z. et al. Endothelial cell infection and endotheliitis in COVID-19. Lancet 395, 1417–1418 (2020). [PMID: 32325026]
  10. Goshua, G. et al. Endotheliopathy in COVID-19-associated coagulopathy: evidence from a single-centre, cross-sectional study. Lancet Haematol. 7, e575–e582 (2020). [PMID: 32619411]
  11. Libby, P. & Luscher, T. COVID-19 is, in the end, an endothelial disease. Eur. Heart J. 41, 3038–3044 (2020). [PMID: 32882706]
  12. Rambaldi, A. et al. Endothelial injury and thrombotic microangiopathy in COVID-19: treatment with the lectin-pathway inhibitor narsoplimab. Immunobiology https://doi.org/10.1016/j.imbio.2020.152001 (2020).
  13. Wang, J., Jiang, M., Chen, X. & Montaner, L. J. Cytokine storm and leukocyte changes in mild versus severe SARS-CoV-2 infection: review of 3,939 COVID-19 patients in China and emerging pathogenesis and therapy concepts. J. Leukoc. Biol. 108, 17–41 (2020). [PMID: 32534467]
  14. Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020). [PMID: 32376901]
  15. Cunha, C. et al. Genetic PTX3 deficiency and aspergillosis in stem-cell transplantation. N. Engl. J. Med. 370, 421–432 (2014). [PMID: 24476432]
  16. Sprong, T. et al. Pentraxin 3 and C-reactive protein in severe meningococcal disease. Shock 31, 28–32 (2009). [PMID: 18650775]
  17. Caironi, P. et al. Pentraxin 3 in patients with severe sepsis or shock: the ALBIOS trial. Eur. J. Clin. Invest. 47, 73–83 (2017). [PMID: 27864924]
  18. Muller, B. et al. Circulating levels of the long pentraxin PTX3 correlate with severity of infection in critically ill patients. Crit. Care Med. 29, 1404–1407 (2001). [PMID: 11445697]
  19. Mauri, T. et al. Persisting high levels of plasma pentraxin 3 over the first days after severe sepsis and septic shock onset are associated with mortality. Intensive Care Med. 36, 621–629 (2010). [PMID: 20119647]
  20. Lee, Y. T. et al. Pentraxin-3 as a marker of sepsis severity and predictor of mortality outcomes: a systematic review and meta-analysis. J. Infect. 76, 1–10 (2018). [PMID: 29174966]
  21. Jenny, N. S., Arnold, A. M., Kuller, L. H., Tracy, R. P. & Psaty, B. M. Associations of pentraxin 3 with cardiovascular disease and all-cause death: the Cardiovascular Health Study. Arterioscler. Thromb. Vasc. Biol. 29, 594–599 (2009). [PMID: 19164811]
  22. Fazzini, F. et al. PTX3 in small-vessel vasculitides: an independent indicator of disease activity produced at sites of inflammation. Arthritis Rheum. 44, 2841–2850 (2001). [PMID: 11762945]
  23. van Rossum, A. P. et al. Abundance of the long pentraxin PTX3 at sites of leukocytoclastic lesions in patients with small-vessel vasculitis. Arthritis Rheum. 54, 986–991 (2006). [PMID: 16508993]
  24. Ramirez, G. A. et al. PTX3 intercepts vascular inflammation in systemic immune-mediated diseases. Front Immunol. 10, 1135 (2019). [PMID: 31191526]
  25. Blanco-Melo, D. et al. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell 181, 1036–1045 (2020). [PMID: 32416070]
  26. Wilk, A. J. et al. A single-cell atlas of the peripheral immune response in patients with severe COVID-19. Nat. Med. 26, 1070–1076 (2020). [PMID: 32514174]
  27. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020). [PMID: 32591762]
  28. Cecconi, M. et al. Early predictors of clinical deterioration in a cohort of 239 patients hospitalized for COVID-19 infection in Lombardy, Italy. J. Clin. Med. 9, 1548 (2020). [>PMCID: ]
  29. Laing, A. G. et al. A dynamic COVID-19 immune signature includes associations with poor prognosis. Nat. Med. 26, 1623–1635 (2020). [PMID: 32807934]
  30. Hou, H. et al. Using IL-2R/lymphocytes for predicting the clinical progression of patients with COVID-19. Clin. Exp. Immunol. 201, 76–84 (2020). [PMID: 32365221]
  31. Chen, R. et al. Longitudinal hematologic and immunologic variations associated with the progression of COVID-19 patients in China. J. Allergy Clin. Immunol. 146, 89–100 (2020). [PMID: 32407836]
  32. Mathew, D. et al. Deep immune profiling of COVID-19 patients reveals distinct immunotypes with therapeutic implications. Science 369, eabc8511 (2020). [PMID: 32669297]
  33. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020). [PMID: 32788292]
  34. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science 369, 718–724 (2020). [PMID: 32661059]
  35. Kuri-Cervantes, L. et al. Comprehensive mapping of immune perturbations associated with severe COVID-19. Sci. Immunol. 5, eabd7114 (2020). [PMID: 32669287]
  36. Zhu, L. et al. Single-cell sequencing of peripheral mononuclear cells reveals distinct immune response landscapes of COVID-19 and influenza patients. Immunity 53, 685–696 (2020). [PMID: 32783921]
  37. Ristagno, G. et al. Pentraxin 3 in cardiovascular disease. Front Immunol. 10, 823 (2019). [PMID: 31057548]
  38. Bastrup-Birk, S. et al. Pentraxin-3 level at admission is a strong predictor of short-term mortality in a community-based hospital setting. J. Intern. Med. 277, 562–572 (2015). [PMID: 25143177]
  39. Hansen, C. B. et al. Complement-related pattern recognition molecules as markers of short-term mortality in intensive care patients. J. Infect. 80, 378–387 (2020). [PMID: 31981636]
  40. Song, J. et al. Biomarker combination and SOFA score for the prediction of mortality in sepsis and septic shock: a prospective observational study according to the Sepsis-3 definitions. Medicine 99, e20495 (2020). [PMID: 32481464]
  41. Katsube, Y. et al. PTX3, a new biomarker for vasculitis, predicts intravenous immunoglobulin unresponsiveness in patients with Kawasaki disease. J. Am. Coll. Cardiol. 57, E2038 (2011). [DOI: 10.1016/S0735-1097(11)62038-X]
  42. Viner, R. M. & Whittaker, E. Kawasaki-like disease: emerging complication during the COVID-19 pandemic. Lancet 395, 1741–1743 (2020). [PMID: 32410759]
  43. Whittaker, E. et al. Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2. JAMA 324, 259–269 (2020). [PMID: 32511692]
  44. Mantovani, A. & Netea, M. G. Trained innate immunity, epigenetics and COVID-19. N. Engl. J. Med. 383, 1078–1080 (2020). [PMID: 32905684]
  45. Verdoni, L. et al. An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study. Lancet 395, 1771–1778 (2020). [PMID: 32410760]
  46. Escher, F. et al. Detection of viral SARS-CoV-2 genomes and histopathological changes in endomyocardial biopsies. ESC Heart Fail. 7, 2440–2447 (2020). [PMID: 32529795]
  47. Lodigiani, C. et al. Venous and arterial thromboembolic complications in COVID-19 patients admitted to an academic hospital in Milan, Italy. Thromb. Res. 191, 9–14 (2020). [PMID: 32353746]
  48. Deban, L. et al. Regulation of leukocyte recruitment by the long pentraxin PTX3. Nat. Immunol. 11, 328–334 (2010). [PMID: 20208538]
  49. Deban, L. et al. Binding of the long pentraxin PTX3 to factor H: interacting domains and function in the regulation of complement activation. J. Immunol. 181, 8433–8440 (2008). [PMID: 19050261]
  50. Risitano, A. M. et al. Complement as a target in COVID-19? Nat. Rev. Immunol. 20, 343–344 (2020). [PMID: 32327719]
  51. Force, A. D. T. et al. Acute respiratory distress syndrome: the Berlin definition. JAMA 307, 2526–2533 (2012).
  52. Alhazzani, W. et al. Surviving sepsis campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19). Crit. Care Med. 48, e440–e469 (2020). [PMID: 32224769]
  53. Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013). [PMID: 23104886]
  54. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014). [PMID: 25516281]
  55. Bost, P. et al. Host-viral infection maps reveal signatures of severe COVID-19 patients. Cell 181, 475–1488 (2020). [DOI: 10.1016/j.cell.2020.05.006]
  56. Liao, M. et al. Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19. Nat. Med. 26, 842–844 (2020). [PMID: 32398875]
  57. Butler, A., Hoffman, P., Smibert, P., Papalexi, E. & Satija, R. Integrating single-cell transcriptomic data across different conditions, technologies and species. Nat. Biotechnol. 36, 411–420 (2018). [PMID: 29608179]
  58. van Dijk, D. et al. Recovering gene interactions from single-cell data using data diffusion. Cell 174, 716–729 (2018). [PMID: 29961576]
  59. Knoflach, M. et al. Pentraxin-3 as a marker of advanced atherosclerosis results from the Bruneck, ARMY and ARFY Studies. PLoS ONE 7, e31474 (2012). [PMID: 22319633]
  60. Locatelli, M. et al. The long pentraxin PTX3 as a correlate of cancer-related inflammation and prognosis of malignancy in gliomas. J. Neuroimmunol. 260, 99–106 (2013). [PMID: 23664694]
  61. Harrell, F. E. Jr., Lee, K. L. & Mark, D. B. Multivariable prognostic models: issues in developing models, evaluating assumptions and adequacy, and measuring and reducing errors. Stat. Med. 15, 361–387 (1996). [PMID: 8668867]
  62. Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B. & Wei, L. J. On the C-statistics for evaluating overall adequacy of risk prediction procedures with censored survival data. Stat. Med. 30, 1105–1117 (2011). [PMID: 21484848]

Grants

  1. H2020-MSCA-ITN-2015/European Commission (EC)

MeSH Term

A549 Cells
Adult
C-Reactive Protein
COVID-19
Cell Line, Tumor
Cells, Cultured
Cohort Studies
Endothelial Cells
Epidemics
Female
Gene Expression Profiling
Humans
Macrophages
Male
Middle Aged
Monocytes
Neutrophils
Prognosis
SARS-CoV-2
Serum Amyloid P-Component

Chemicals

Serum Amyloid P-Component
PTX3 protein
C-Reactive Protein

Word Cloud

Similar Articles

Cited By