Haishan Shi, Xiaoling Ye, Jing Zhang, Tingting Wu, Tao Yu, Changren Zhou, Jiandong Ye
Investigation of thermostability will lead the groundbreaking of unraveling the mechanism of influence of ion-doping on the properties of calcium phosphates. In this work, octacalcium phosphate (OCP), a metastable precursor of biological apatite, was used as a stability model for doping ions (Fe and Sr) with different ionic charges and radii. After treated under hot air at different temperatures (110-200 °C), the phase, morphology, structure, physicochemical properties, protein affinity, ions release, and cytological responses of the ion-doped OCPs were investigated comparatively. The results showed that the collapse of OCP crystals gradually occurred, accompanying with the dehydration of hydrated layers and the disintegration of plate-like crystals as the temperature increased. The collapsed crystals still retained the typical properties of OCP and the potential of conversion into hydroxyapatite. Compared to the undoped OCP, Fe-OCP, and Sr-OCP had lower and higher thermostability respectively, leading to different material surface properties and ions release. The adjusted thermostability of Fe-OCP and Sr-OCP significantly enhanced the adsorption of proteins (BSA and LSZ) and the cytological behavior (adhesion, spreading, proliferation, and osteogenic differentiation) of bone marrow mesenchymal stem cells to a varying extent under the synergistic effects of corresponding surface characteristics and early active ions release. This work paves the way for understanding the modification mechanism of calcium phosphates utilizing ion doping strategy and developing bioactive OCP-based materials for tissue repair.
Acta Biomater. 2018 Jan;65:462-474
[PMID:
29066420]
Acta Biomater. 2012 Dec;8(12):4417-25
[PMID:
22868193]
J Tissue Eng. 2016 Oct 03;7:2041731416670770
[PMID:
27757220]
Blood Cells Mol Dis. 2002 Nov-Dec;29(3):336-55
[PMID:
12547224]
Tissue Eng Part A. 2014 Apr;20(7-8):1336-41
[PMID:
24294829]
J Biomed Mater Res B Appl Biomater. 2006 Apr;77(1):201-12
[PMID:
16222696]
Acta Biomater. 2010 Jun;6(6):1882-94
[PMID:
20040384]
J Inorg Biochem. 1990 Dec;40(4):293-9
[PMID:
1964955]
J Mater Chem B. 2015 Dec 7;3(45):8782-8795
[PMID:
32263474]
Mol Syst Biol. 2015 Jan 29;11(1):785
[PMID:
25634765]
Biomaterials. 2006 May;27(13):2671-81
[PMID:
16413054]
Biomaterials. 2014 Aug;35(25):6882-97
[PMID:
24862443]
J Biomed Mater Res. 2001 Dec 15;57(4):477-84
[PMID:
11553877]
J Cell Biol. 1992 Jun;117(5):1109-17
[PMID:
1374416]
Acta Biomater. 2018 Jul 1;74:478-488
[PMID:
29778896]
Colloids Surf B Biointerfaces. 2004 May 1;35(1):33-40
[PMID:
15261053]
Colloids Surf B Biointerfaces. 2020 Oct;194:111206
[PMID:
32585534]
J Mater Chem B. 2015 Jul 14;3(26):5318-5329
[PMID:
32262608]
Acta Biomater. 2010 Sep;6(9):3379-87
[PMID:
20371385]
J Mater Chem B. 2016 Mar 7;4(9):1712-1719
[PMID:
32263022]
J Biomed Mater Res A. 2004 Mar 1;68(3):513-21
[PMID:
14762931]
Calcif Tissue Int. 2006 Jan;78(1):45-54
[PMID:
16397737]
Trends Biotechnol. 2019 Apr;37(4):428-441
[PMID:
30470548]
Biochim Biophys Acta. 2000 Dec 20;1498(2-3):91-8
[PMID:
11108953]
J Phys Chem B. 2009 Mar 19;113(11):3584-9
[PMID:
19243110]
J Mater Chem B. 2015 Jun 21;3(23):4626-4640
[PMID:
32262477]
J Biol Chem. 2000 Feb 25;275(8):5888-903
[PMID:
10681581]
Cell Physiol Biochem. 2009;23(1-3):165-74
[PMID:
19255511]
Adv Mater. 2013 Sep 6;25(33):4605-11
[PMID:
23836692]
Anal Biochem. 2011 Nov 15;418(2):276-85
[PMID:
21839718]
FASEB J. 1990 Oct;4(13):3111-23
[PMID:
2210157]
Biomaterials. 2010 Mar;31(7):1493-501
[PMID:
19954836]