Ali Raza, Muhammad Ahsan Asghar, Bushra Ahmad, Cheng Bin, M Iftikhar Hussain, Wang Li, Tauseef Iqbal, Muhammad Yaseen, Iram Shafiq, Zhang Yi, Irshan Ahmad, Wenyu Yang, Liu Weiguo
Lodging is one of the most chronic restraints of the maize-soybean intercropping system, which causes a serious threat to agriculture development and sustainability. In the maize-soybean intercropping system, shade is a major causative agent that is triggered by the higher stem length of a maize plant. Many morphological and anatomical characteristics are involved in the lodging phenomenon, along with the chemical configuration of the stem. Due to maize shading, soybean stem evolves the shade avoidance response and resulting in the stem elongation that leads to severe lodging stress. However, the major agro-techniques that are required to explore the lodging stress in the maize-soybean intercropping system for sustainable agriculture have not been precisely elucidated yet. Therefore, the present review is tempted to compare the conceptual insights with preceding published researches and proposed the important techniques which could be applied to overcome the devastating effects of lodging. We further explored that, lodging stress management is dependent on multiple approaches such as agronomical, chemical and genetics which could be helpful to reduce the lodging threats in the maize-soybean intercropping system. Nonetheless, many queries needed to explicate the complex phenomenon of lodging. Henceforth, the agronomists, physiologists, molecular actors and breeders require further exploration to fix this challenging problem.
Field Crops Res. 2017 Nov;213:38-50
[PMID:
29104356]
New Phytol. 2008;179(4):930-944
[PMID:
18537892]
Plants (Basel). 2020 Jul 31;9(8):
[PMID:
32752115]
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):9043-8
[PMID:
12077303]
Environ Sci Pollut Res Int. 2017 Feb;24(6):5222-5237
[PMID:
28025787]
Sci Rep. 2017 Apr 19;7:46596
[PMID:
28422161]
BMC Genomics. 2019 Jun 26;20(1):527
[PMID:
31242867]
Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(4):220-233
[PMID:
28413198]
J Exp Bot. 2007;58(8):2011-21
[PMID:
17452751]
Ann Bot. 2011 Jul;108(1):207-14
[PMID:
21562027]
Annu Rev Plant Biol. 2003;54:519-46
[PMID:
14503002]
Phytopathology. 2002 Oct;92(10):1095-103
[PMID:
18944220]
Proc Natl Acad Sci U S A. 2008 Jun 3;105(22):7887-92
[PMID:
18505841]
Plant Signal Behav. 2010 Jun;5(6):655-62
[PMID:
20404496]
New Phytol. 2013 Nov;200(3):700-709
[PMID:
23834738]
Sci Rep. 2018 Jan 12;8(1):634
[PMID:
29330468]
Sci Rep. 2017 Apr 28;7(1):1270
[PMID:
28455510]
Biol Trace Elem Res. 2012 Dec;150(1-3):381-90
[PMID:
22864688]
Sci Rep. 2016 Aug 24;6:31890
[PMID:
27552909]
Proc Natl Acad Sci U S A. 2007 Jul 3;104(27):11192-6
[PMID:
17592130]
Plant J. 2000 Oct;24(2):159-69
[PMID:
11069691]
Front Plant Sci. 2019 Jan 08;9:1952
[PMID:
30687355]
J Exp Bot. 2017 Mar 1;68(7):1519-1529
[PMID:
28369427]
Trends Plant Sci. 2003 Dec;8(12):576-81
[PMID:
14659706]
Front Plant Sci. 2014 Dec 16;5:703
[PMID:
25566278]
Plant Sci. 2016 Apr;245:94-118
[PMID:
26940495]
Environ Sci Pollut Res Int. 2018 Oct;25(29):29366-29378
[PMID:
30121770]
BMC Plant Biol. 2016 Jan 25;16:28
[PMID:
26811086]
BMC Plant Biol. 2007 Jun 12;7:30
[PMID:
17565675]
Int J Mol Sci. 2013 Apr 02;14(4):7370-90
[PMID:
23549270]
Planta. 2014 Sep;240(3):447-58
[PMID:
25011646]
J Agric Food Chem. 2012 Jun 13;60(23):5922-35
[PMID:
22607527]
PLoS One. 2017 Sep 14;12(9):e0184503
[PMID:
28910355]
PeerJ. 2019 Jul 23;7:e7262
[PMID:
31372317]
Biotechnol Lett. 2004 Jul;26(14):1147-52
[PMID:
15266121]
Planta. 2009 Sep;230(4):767-78
[PMID:
19626339]
J Integr Plant Biol. 2010 Feb;52(2):186-94
[PMID:
20377680]
Sci Rep. 2019 Dec 30;9(1):20274
[PMID:
31889083]
Plant Sci. 2015 Oct;239:84-91
[PMID:
26398793]
J Hazard Mater. 2021 Jan 5;401:123256
[PMID:
32629356]
Curr Opin Plant Biol. 2016 Apr;30:151-8
[PMID:
27016665]
BMC Bioinformatics. 2009 Oct 08;10 Suppl 11:S3
[PMID:
19811687]
Front Plant Sci. 2017 Aug 21;8:1431
[PMID:
28871266]
PLoS One. 2018 May 31;13(5):e0198159
[PMID:
29851989]
Theor Appl Genet. 2007 Jun;115(1):59-66
[PMID:
17429602]
Trends Plant Sci. 2013 Feb;18(2):65-71
[PMID:
23084466]
New Phytol. 2015 May;206(3):1051-1062
[PMID:
25615017]
PLoS One. 2014 Feb 19;9(2):e86870
[PMID:
24586255]
J Exp Bot. 2011 Nov;62(15):5463-9
[PMID:
21841171]
PLoS One. 2017 Nov 8;12(11):e0187543
[PMID:
29117250]
Front Plant Sci. 2018 Sep 11;9:1047
[PMID:
30254649]
J Integr Plant Biol. 2010 Apr;52(4):360-76
[PMID:
20377698]
Trends Plant Sci. 2011 Jul;16(7):363-71
[PMID:
21497543]
Breed Sci. 2014 Dec;64(4):300-8
[PMID:
25914584]
Sci Rep. 2019 Sep 17;9(1):13453
[PMID:
31530859]
Sci Rep. 2020 Jun 11;10(1):9504
[PMID:
32528144]
Nat Plants. 2016 Jun 03;2(6):16080
[PMID:
27255843]
Sci Total Environ. 2019 Mar 25;658:626-637
[PMID:
30580217]
Mol Plant. 2015 Feb;8(2):303-14
[PMID:
25616386]
Sci Rep. 2019 Apr 25;9(1):6540
[PMID:
31024048]
Commun Biol. 2018 Mar 22;1:22
[PMID:
30271909]
Front Plant Sci. 2018 Dec 21;9:1886
[PMID:
30622548]
Theor Appl Genet. 2005 Aug;111(3):423-30
[PMID:
15968526]
Front Plant Sci. 2016 Nov 24;7:1776
[PMID:
27933086]
Int J Mol Sci. 2019 Aug 28;20(17):
[PMID:
31466256]
Theor Appl Genet. 2009 Aug;119(3):383-95
[PMID:
19430758]
Photochem Photobiol Sci. 2020 Apr 15;19(4):462-472
[PMID:
32154819]
Front Plant Sci. 2017 May 30;8:881
[PMID:
28611803]
Front Plant Sci. 2016 Mar 10;7:243
[PMID:
27014283]
New Phytol. 2014 Jan;201(1):193-204
[PMID:
24033342]
Theor Appl Genet. 2004 Feb;108(3):458-67
[PMID:
14504749]
Biosci Biotechnol Biochem. 2011;75(6):1104-12
[PMID:
21670528]
Theor Appl Genet. 2011 May;122(8):1517-36
[PMID:
21359559]
Genomics. 2019 May;111(3):450-456
[PMID:
29524463]
Sci Rep. 2017 Feb 02;7:41805
[PMID:
28150816]
Planta. 2018 Jan;247(1):1-26
[PMID:
29110072]
Phytochemistry. 2012 Jun;78:54-64
[PMID:
22455871]
Arabidopsis Book. 2012;10:e0157
[PMID:
22582029]