Androgen Signaling Regulates SARS-CoV-2 Receptor Levels and Is Associated with Severe COVID-19 Symptoms in Men.

Ryan M Samuel, Homa Majd, Mikayla N Richter, Zaniar Ghazizadeh, Seyedeh Maryam Zekavat, Albertas Navickas, Jonathan T Ramirez, Hosseinali Asgharian, Camille R Simoneau, Luke R Bonser, Kyung Duk Koh, Miguel Garcia-Knight, Michel Tassetto, Sara Sunshine, Sina Farahvashi, Ali Kalantari, Wei Liu, Raul Andino, Hongyu Zhao, Pradeep Natarajan, David J Erle, Melanie Ott, Hani Goodarzi, Faranak Fattahi
Author Information
  1. Ryan M Samuel: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  2. Homa Majd: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  3. Mikayla N Richter: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  4. Zaniar Ghazizadeh: Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Yale School of Medicine, New Haven, CT 06510, USA.
  5. Seyedeh Maryam Zekavat: Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT 06510, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA.
  6. Albertas Navickas: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
  7. Jonathan T Ramirez: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  8. Hosseinali Asgharian: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
  9. Camille R Simoneau: Gladstone Institutes, San Francisco, CA 94158, USA.
  10. Luke R Bonser: Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
  11. Kyung Duk Koh: Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
  12. Miguel Garcia-Knight: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
  13. Michel Tassetto: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
  14. Sara Sunshine: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA.
  15. Sina Farahvashi: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  16. Ali Kalantari: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA.
  17. Wei Liu: Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT 06510, USA.
  18. Raul Andino: Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
  19. Hongyu Zhao: Program of Computational Biology & Bioinformatics, Yale University, New Haven, CT 06510, USA; Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA.
  20. Pradeep Natarajan: Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
  21. David J Erle: Department of Medicine and Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA.
  22. Melanie Ott: Gladstone Institutes, San Francisco, CA 94158, USA; Department of Medicine, University of California San Francisco, San Francisco, CA 94143, USA.
  23. Hani Goodarzi: Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Department of Urology, University of California, San Francisco, CA 94158, USA; Bakar Computational Health Sciences Institute, University of California, San Francisco, CA 94158, USA. Electronic address: hani.goodarzi@ucsf.edu.
  24. Faranak Fattahi: Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, CA 94143, USA; Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA; Program in Craniofacial Biology, University of California, San Francisco, CA 94110, USA. Electronic address: faranak.fattahi@ucsf.edu.

Abstract

SARS-CoV-2 infection has led to a global health crisis, and yet our understanding of the disease and potential treatment options remains limited. The infection occurs through binding of the virus with angiotensin converting enzyme 2 (ACE2) on the cell membrane. Here, we established a screening strategy to identify drugs that reduce ACE2 levels in human embryonic stem cell (hESC)-derived cardiac cells and lung organoids. Target analysis of hit compounds revealed androgen signaling as a key modulator of ACE2 levels. Treatment with antiandrogenic drugs reduced ACE2 expression and protected hESC-derived lung organoids against SARS-CoV-2 infection. Finally, clinical data on COVID-19 patients demonstrated that prostate diseases, which are linked to elevated androgen, are significant risk factors and that genetic variants that increase androgen levels are associated with higher disease severity. These findings offer insights on the mechanism of disproportionate disease susceptibility in men and identify antiandrogenic drugs as candidate therapeutics for COVID-19.

Keywords

References

  1. JAMA Cardiol. 2020 Jul 1;5(7):811-818 [PMID: 32219356]
  2. N Engl J Med. 2020 Apr 30;382(18):1708-1720 [PMID: 32109013]
  3. Stem Cell Reports. 2018 Mar 13;10(3):848-859 [PMID: 29503094]
  4. Am J Respir Cell Mol Biol. 2020 Nov 16;: [PMID: 33196316]
  5. Genome Biol. 2019 Dec 31;21(1):1 [PMID: 31892341]
  6. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  7. JAMA Cardiol. 2020 Jul 1;5(7):802-810 [PMID: 32211816]
  8. Nat Biotechnol. 2018 Jun;36(5):421-427 [PMID: 29608177]
  9. Nat Cell Biol. 2020 Jan;22(1):108-119 [PMID: 31915373]
  10. Nat Med. 2005 Aug;11(8):875-9 [PMID: 16007097]
  11. J Virol. 2014 Jan;88(2):1293-307 [PMID: 24227843]
  12. Asian J Urol. 2015 Jan;2(1):11-18 [PMID: 29051866]
  13. Microb Genom. 2020 Jul;6(7): [PMID: 32553051]
  14. PLoS Comput Biol. 2015 Apr 17;11(4):e1004219 [PMID: 25885710]
  15. Cell Stem Cell. 2017 Oct 5;21(4):472-488.e10 [PMID: 28965766]
  16. BMJ. 2018 Jul 12;362:k601 [PMID: 30002074]
  17. Nat Biotechnol. 2007 Feb;25(2):197-206 [PMID: 17287757]
  18. JAMA Netw Open. 2020 Jun 1;3(6):e2010895 [PMID: 32492165]
  19. Transl Androl Urol. 2013 Sep;2(3):157-177 [PMID: 25237629]
  20. BMJ. 2020 Jun 3;369:m2094 [PMID: 32493739]
  21. J Biomol Struct Dyn. 2020 Apr 22;:1-9 [PMID: 32274964]
  22. Int J Clin Exp Med. 2012;5(2):96-104 [PMID: 22567171]
  23. Nat Med. 2020 Feb;26(2):252-258 [PMID: 32042192]
  24. N Engl J Med. 2020 Jun 11;382(24):2372-2374 [PMID: 32302078]
  25. Immunity. 2020 Jun 16;52(6):910-941 [PMID: 32505227]
  26. J Evol Biol. 2011 Aug;24(8):1836-41 [PMID: 21605215]
  27. Indian J Urol. 2007 Jan;23(1):35-42 [PMID: 19675761]
  28. Mol Cell. 2009 Dec 11;36(5):900-11 [PMID: 20005852]
  29. Int J Epidemiol. 2015 Apr;44(2):512-25 [PMID: 26050253]
  30. J Pathol. 2004 Jun;203(2):631-7 [PMID: 15141377]
  31. Cardiovasc Res. 2020 Mar 1;116(3):658-670 [PMID: 31173076]
  32. Annu Rev Physiol. 2013;75:201-24 [PMID: 23157556]
  33. Cell. 2020 Jun 25;181(7):1475-1488.e12 [PMID: 32479746]
  34. Nature. 2018 Oct;562(7726):203-209 [PMID: 30305743]
  35. World J Clin Oncol. 2011 Dec 10;2(12):384-96 [PMID: 22171281]
  36. Cell. 2019 Jul 25;178(3):714-730.e22 [PMID: 31348891]
  37. Development. 2019 Jan 22;146(2): [PMID: 30578291]
  38. Nat Protoc. 2019 Feb;14(2):518-540 [PMID: 30664680]
  39. J Autoimmun. 2020 Jul;111:102452 [PMID: 32291137]
  40. J Virol Methods. 2010 Nov;169(2):365-74 [PMID: 20709108]
  41. J Chem Inf Model. 2015 Nov 23;55(11):2324-37 [PMID: 26479676]
  42. Nat Commun. 2020 Apr 29;11(1):2089 [PMID: 32350277]
  43. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  44. Methods Mol Med. 2005;107:183-206 [PMID: 15492373]
  45. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  46. BMC Cancer. 2020 May 25;20(1):469 [PMID: 32450824]
  47. Am J Respir Cell Mol Biol. 2020 Mar;62(3):373-381 [PMID: 31596609]
  48. Circulation. 2020 Jan 28;141(4):301-312 [PMID: 31735076]
  49. Nature. 2020 May;581(7807):215-220 [PMID: 32225176]
  50. Cardiovasc Res. 2020 Aug 1;116(10):1666-1687 [PMID: 32352535]

Grants

  1. R01 CA240984/NCI NIH HHS
  2. DP1 DA038043/NIDA NIH HHS
  3. T32 HD007470/NICHD NIH HHS
  4. R01 HL148050/NHLBI NIH HHS
  5. DP2 NS116769/NINDS NIH HHS
  6. R01 GM123977/NIGMS NIH HHS
  7. F30 HL149180/NHLBI NIH HHS
  8. F32 GM133118/NIGMS NIH HHS
  9. R01 HL148565/NHLBI NIH HHS
  10. R35 HL145235/NHLBI NIH HHS
  11. U19 AI077439/NIAID NIH HHS
  12. R01 DK121169/NIDDK NIH HHS

MeSH Term

Adult
Androgen Antagonists
Androgens
Angiotensin-Converting Enzyme 2
Angiotensin-Converting Enzyme Inhibitors
Animals
Antiviral Agents
COVID-19
Cells, Cultured
Chlorocebus aethiops
Drug Evaluation, Preclinical
Female
Humans
Male
Myocytes, Cardiac
Organoids
Patient Acuity
Receptors, Coronavirus
Risk Factors
Sex Factors
Signal Transduction
Vero Cells
COVID-19 Drug Treatment

Chemicals

Androgen Antagonists
Androgens
Angiotensin-Converting Enzyme Inhibitors
Antiviral Agents
Receptors, Coronavirus
ACE2 protein, human
Angiotensin-Converting Enzyme 2