SARS-CoV-2 Infected Cardiomyocytes Recruit Monocytes by Secreting CCL2.

Shuibing Chen, Liuliu Yang, Benjamin Nilsson-Payant, Yuling Han, Fabrice Jaffré, Jiajun Zhu, Pengfei Wang, Tuo Zhang, David Redmond, Sean Houghton, Rasmus Møller, Daisy Hoagland, Shu Horiuchi, Joshua Acklin, Jean Lim, Yaron Bram, Chanel Richardson, Vasuretha Chandar, Alain Borczuk, Yaoxing Huang, Jenny Xiang, David Ho, Robert Schwartz, Benjamin tenOever, Todd Evans
Author Information

Abstract

Heart injury has been reported in up to 20% of COVID-19 patients, yet the cause of myocardial histopathology remains unknown. In order to study the cause of myocardial pathology in COVID-19 patients, we used a hamster model to determine whether following infection SARS-CoV-2, the causative agent of COVID-19, can be detected in heart tissues. Here, we clearly demonstrate that viral RNA and nucleocapsid protein is present in cardiomyocytes in the hearts of infected hamsters. Interestingly, functional cardiomyocyte associated gene expression was decreased in infected hamster hearts, corresponding to an increase in reactive oxygen species (ROS). This data using an animal model was further validated using autopsy heart samples of COVID-19 patients. Moreover, we show that both human pluripotent stem cell-derived cardiomyocytes (hPSC-derived CMs) and adult cardiomyocytes (CMs) can be infected by SARS-CoV-2 and that CCL2 is secreted upon SARS-CoV-2 infection, leading to monocyte recruitment. Increased CCL2 expression and macrophage infiltration was also observed in the hearts of infected hamsters. Using single cell RNA-seq, we also show that macrophages are able to decrease SARS-CoV-2 infection of CMs. Overall, our study provides direct evidence that SARS-CoV-2 infects CMs in vivo and proposes a mechanism of immune-cell infiltration and pathology in heart tissue of COVID-19 patients.

References

  1. Zhonghua Bing Li Xue Za Zhi. 2020 May 8;49(5):411-417 [PMID: 32172546]
  2. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  3. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  4. Cardiovasc Res. 2020 Mar 1;116(3):658-670 [PMID: 31173076]
  5. Lancet. 2020 Jun 27;395(10242):e116 [PMID: 32593338]
  6. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  7. Nat Commun. 2018 Nov 9;9(1):4735 [PMID: 30413720]
  8. Stem Cell Reports. 2019 Jun 11;12(6):1282-1297 [PMID: 31189095]
  9. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  10. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  11. JAMA Cardiol. 2020 Jul 1;5(7):819-824 [PMID: 32219357]
  12. Arch Pharm Res. 2013 Sep;36(9):1039-50 [PMID: 23771498]
  13. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  14. JAMA Cardiol. 2020 Jul 1;5(7):811-818 [PMID: 32219356]
  15. Lancet. 2020 May 23;395(10237):1607-1608 [PMID: 32386565]
  16. Cardiovasc Res. 2020 Dec 1;116(14):2207-2215 [PMID: 32966582]
  17. J Comput Biol. 2017 Nov;24(11):1138-1143 [PMID: 28715235]
  18. Intensive Care Med. 2020 May;46(5):846-848 [PMID: 32125452]
  19. Nat Rev Immunol. 2014 Jun;14(6):392-404 [PMID: 24854589]
  20. Nature. 2020 Jul;583(7818):834-838 [PMID: 32408338]
  21. ESC Heart Fail. 2020 Oct;7(5):2440-2447 [PMID: 32529795]
  22. Proc Natl Acad Sci U S A. 2020 Jul 14;117(28):16587-16595 [PMID: 32571934]
  23. JAMA Cardiol. 2020 Nov 1;5(11):1281-1285 [PMID: 32730555]
  24. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  25. JAMA Cardiol. 2020 Jul 1;5(7):802-810 [PMID: 32211816]
  26. Cell Rep Med. 2020 Jul 21;1(4):100052 [PMID: 32835305]
  27. Cell. 2020 Jul 9;182(1):50-58.e8 [PMID: 32516571]
  28. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  29. Cell Stem Cell. 2020 Jul 2;27(1):125-136.e7 [PMID: 32579880]
  30. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  31. Eur J Heart Fail. 2020 May;22(5):911-915 [PMID: 32275347]
  32. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  33. Lancet Child Adolesc Health. 2020 Oct;4(10):790-794 [PMID: 32828177]

Word Cloud

Similar Articles

Cited By