Feng-Ping Wang: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Xiang-Jun Zhao: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Fazli Wahid: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Xue-Qing Zhao: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Xiao-Tong Qin: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
He Bai: China Offshore Environm Serv Ltd, Tianjin, 300457, PR China.
Yan-Yan Xie: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Cheng Zhong: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China. Electronic address: czhong@tust.edu.cn.
Shi-Ru Jia: State Key Laboratory of Food Nutrition & Safety, Tianjin University of Science and Technology, Tianjin, PR China; Key Laboratory of Industrial Fermentation Microbiology, (Ministry of Education), Tianjin University of Science and Technology, Tianjin, PR China.
Bacterial cellulose (BC) is a substrate material with high purity and robust mechanical strength, but due to its small pore size and relatively expensive price, it is restricted as an oil-/water separation membrane. In this study, cheaper plant cellulose needle-leaf bleached kraft pulp (NBKP) was added to BC to increase the pore size of the composite membrane, and a superhydrophobic/superoleophilic membrane was prepared for oil-/water separation. The modified membrane surface displayed a petal-like micro-structure and a water contact angle (WCA) of 162.3°, while the oil contact angle was decreased to 0°. What's more, the membrane exhibited excellent oil-/water separation under gravity, recyclability, and a separation efficiency (>95 %), and it was both pH and salt resistant. The membrane also remained durably hydrophobic after 10 separation cycles. And the separation methodology is expected to be highly energy-efficient.