An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells.

Mart M Lamers, Jelte van der Vaart, Kèvin Knoops, Samra Riesebosch, Tim I Breugem, Anna Z Mykytyn, Joep Beumer, Debby Schipper, Karel Bezstarosti, Charlotte D Koopman, Nathalie Groen, Raimond B G Ravelli, Hans Q Duimel, Jeroen A A Demmers, Georges M G M Verjans, Marion P G Koopmans, Mauro J Muraro, Peter J Peters, Hans Clevers, Bart L Haagmans
Author Information
  1. Mart M Lamers: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands. ORCID
  2. Jelte van der Vaart: Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands. ORCID
  3. Kèvin Knoops: The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
  4. Samra Riesebosch: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands.
  5. Tim I Breugem: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands.
  6. Anna Z Mykytyn: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands.
  7. Joep Beumer: Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands. ORCID
  8. Debby Schipper: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands.
  9. Karel Bezstarosti: Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
  10. Charlotte D Koopman: Single Cell Discoveries, Utrecht, The Netherlands.
  11. Nathalie Groen: Single Cell Discoveries, Utrecht, The Netherlands.
  12. Raimond B G Ravelli: The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
  13. Hans Q Duimel: The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
  14. Jeroen A A Demmers: Proteomics Center, Erasmus University Medical Center, Rotterdam, The Netherlands.
  15. Georges M G M Verjans: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands. ORCID
  16. Marion P G Koopmans: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands.
  17. Mauro J Muraro: Single Cell Discoveries, Utrecht, The Netherlands.
  18. Peter J Peters: The Maastricht Multimodal Molecular Imaging Institute, Maastricht University, Maastricht, The Netherlands.
  19. Hans Clevers: Oncode Institute, Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences and University Medical Center, Utrecht, The Netherlands. ORCID
  20. Bart L Haagmans: Viroscience Department, Erasmus University Medical Center, Rotterdam, The Netherlands. ORCID

Abstract

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19), which may result in acute respiratory distress syndrome (ARDS), multiorgan failure, and death. The alveolar epithelium is a major target of the virus, but representative models to study virus host interactions in more detail are currently lacking. Here, we describe a human 2D air-liquid interface culture system which was characterized by confocal and electron microscopy and single-cell mRNA expression analysis. In this model, alveolar cells, but also basal cells and rare neuroendocrine cells, are grown from 3D self-renewing fetal lung bud tip organoids. These cultures were readily infected by SARS-CoV-2 with mainly surfactant protein C-positive alveolar type II-like cells being targeted. Consequently, significant viral titers were detected and mRNA expression analysis revealed induction of type I/III interferon response program. Treatment of these cultures with a low dose of interferon lambda 1 reduced viral replication. Hence, these cultures represent an experimental model for SARS-CoV-2 infection and can be applied for drug screens.

Keywords

Associated Data

GEO | GSE153218; GSE161934

References

  1. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  2. Stem Cell Reports. 2014 Sep 9;3(3):394-403 [PMID: 25241738]
  3. Cell Host Microbe. 2016 Feb 10;19(2):142-9 [PMID: 26867173]
  4. Nat Methods. 2017 Sep 29;14(10):935-936 [PMID: 28960196]
  5. Development. 2019 Jan 22;146(2): [PMID: 30578291]
  6. Sci Rep. 2019 Apr 23;9(1):6479 [PMID: 31015509]
  7. Stem Cell Reports. 2018 Jan 9;10(1):101-119 [PMID: 29249664]
  8. Science. 2020 Mar 13;367(6483):1260-1263 [PMID: 32075877]
  9. Lancet Respir Med. 2020 Jul;8(7):687-695 [PMID: 32386571]
  10. Cell Stem Cell. 2020 Dec 3;27(6):905-919.e10 [PMID: 33142113]
  11. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  12. Am J Clin Pathol. 2020 May 5;153(6):725-733 [PMID: 32275742]
  13. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  14. Cell Stem Cell. 2017 Oct 5;21(4):472-488.e10 [PMID: 28965766]
  15. Euro Surveill. 2020 Jan;25(3): [PMID: 31992387]
  16. EMBO J. 2021 Mar 1;40(5):e105912 [PMID: 33283287]
  17. N Engl J Med. 2020 Feb 20;382(8):727-733 [PMID: 31978945]
  18. Cell. 2005 Jun 17;121(6):823-35 [PMID: 15960971]
  19. Nucleic Acids Res. 2010 Jul;38(Web Server issue):W96-102 [PMID: 20484371]
  20. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  21. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  22. J Histochem Cytochem. 2010 Oct;58(10):891-901 [PMID: 20566753]
  23. Nat Med. 2020 Apr;26(4):450-452 [PMID: 32284615]
  24. N Engl J Med. 2000 May 4;342(18):1334-49 [PMID: 10793167]
  25. N Engl J Med. 2020 Jul 9;383(2):120-128 [PMID: 32437596]
  26. Pharm Res. 2009 May;26(5):1172-80 [PMID: 19199008]
  27. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  28. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  29. EMBO J. 2019 Feb 15;38(4): [PMID: 30643021]
  30. Cell Stem Cell. 2020 Dec 3;27(6):890-904.e8 [PMID: 33128895]
  31. Cell Stem Cell. 2020 Dec 3;27(6):962-973.e7 [PMID: 32979316]
  32. Histopathology. 2020 Aug;77(2):198-209 [PMID: 32364264]
  33. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  34. Curr Pathobiol Rep. 2017;5(2):223-231 [PMID: 28596933]
  35. N Engl J Med. 2017 Aug 10;377(6):562-572 [PMID: 28792873]
  36. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  37. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  38. J Histochem Cytochem. 2015 Dec;63(12):908-21 [PMID: 26374831]
  39. J Virol. 2005 Dec;79(23):14614-21 [PMID: 16282461]
  40. Ann Intern Med. 2020 May 5;172(9):577-582 [PMID: 32150748]
  41. Sci Rep. 2020 Mar 26;10(1):5499 [PMID: 32218519]
  42. Nat Methods. 2017 Nov;14(11):1097-1106 [PMID: 28967890]
  43. J Virol. 2007 Jan;81(2):548-57 [PMID: 17108024]
  44. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  45. AJR Am J Roentgenol. 2020 Oct;215(4):839-842 [PMID: 32298149]
  46. Biochem Biophys Res Commun. 2020 May 21;526(1):135-140 [PMID: 32199615]
  47. Nature. 2018 Mar 8;555(7695):251-255 [PMID: 29489752]
  48. Science. 2020 May 29;368(6494):1012-1015 [PMID: 32303590]
  49. Elife. 2017 Jun 30;6: [PMID: 28665271]
  50. Mol Syst Biol. 2020 Jul;16(7):e9610 [PMID: 32715618]
  51. Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):6822-6827 [PMID: 29891677]
  52. J Histochem Cytochem. 1999 Feb;47(2):129-37 [PMID: 9889249]
  53. Nat Microbiol. 2020 Apr;5(4):536-544 [PMID: 32123347]
  54. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  55. Nat Commun. 2014 Dec 11;5:5728 [PMID: 25500896]
  56. Nature. 2020 Dec;588(7839):670-675 [PMID: 33238290]
  57. Bioessays. 2015 Sep;37(9):1028-37 [PMID: 26201286]
  58. Lancet. 2020 Feb 15;395(10223):507-513 [PMID: 32007143]
  59. Genome Biol. 2016 Apr 28;17:77 [PMID: 27121950]
  60. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  61. J Clin Invest. 2013 Jul;123(7):3025-36 [PMID: 23921127]
  62. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  63. Nat Protoc. 2019 Jan;14(1):68-85 [PMID: 30464214]
  64. Elife. 2015 Mar 24;4: [PMID: 25803487]
  65. J Virol. 2007 Sep;81(18):9812-24 [PMID: 17596301]
  66. Cell Discov. 2020 Sep 15;6:65 [PMID: 32953130]

Grants

  1. 14207/NWO | Stichting voor de Technische Wetenschappen (STW)
  2. 022.005.032/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)
  3. 184.034.019/Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO)

MeSH Term

Alveolar Epithelial Cells
Animals
COVID-19
Chlorocebus aethiops
Gene Expression Regulation
Humans
Interferon Type I
Interferons
Models, Biological
Organoids
SARS-CoV-2
Vero Cells
Virus Replication
Interferon Lambda

Chemicals

Interferon Type I
Interferons
Interferon Lambda