Low-Avidity CD4 T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19.

Petra Bacher, Elisa Rosati, Daniela Esser, Gabriela Rios Martini, Carina Saggau, Esther Schiminsky, Justina Dargvainiene, Ina Schr��der, Imke Wieters, Yascha Khodamoradi, Fabian Eberhardt, Maria J G T Vehreschild, Holger Neb, Michael Sonntagbauer, Claudio Conrad, Florian Tran, Philip Rosenstiel, Robert Markewitz, Klaus-Peter Wandinger, Max Augustin, Jan Rybniker, Matthias Kochanek, Frank Leypoldt, Oliver A Cornely, Philipp Koehler, Andre Franke, Alexander Scheffold
Author Information
  1. Petra Bacher: Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany. Electronic address: p.bacher@ikmb.uni-kiel.de.
  2. Elisa Rosati: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
  3. Daniela Esser: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany.
  4. Gabriela Rios Martini: Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany; Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
  5. Carina Saggau: Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany.
  6. Esther Schiminsky: Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany.
  7. Justina Dargvainiene: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany.
  8. Ina Schr��der: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany.
  9. Imke Wieters: Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany.
  10. Yascha Khodamoradi: Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany.
  11. Fabian Eberhardt: Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany.
  12. Maria J G T Vehreschild: Department of Internal Medicine, Infectious Diseases, University Hospital Frankfurt & Goethe University Frankfurt, Frankfurt am Main, Germany.
  13. Holger Neb: Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
  14. Michael Sonntagbauer: Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Frankfurt am Main, Germany.
  15. Claudio Conrad: Department of Internal Medicine, Hospital of Preetz, Preetz, Germany.
  16. Florian Tran: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany; Department of Internal Medicine I, UKSH Kiel, Germany.
  17. Philip Rosenstiel: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
  18. Robert Markewitz: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany.
  19. Klaus-Peter Wandinger: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany.
  20. Max Augustin: University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
  21. Jan Rybniker: University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
  22. Matthias Kochanek: University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany.
  23. Frank Leypoldt: Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/ L��beck, Germany; Department of Neurology, University Hospital Schleswig-Holstein, Kiel, Germany.
  24. Oliver A Cornely: University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Medical Faculty and University Hospital Cologne, German Center for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Clinical Trials Centre Cologne, ZKS K��ln, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
  25. Philipp Koehler: University of Cologne, Medical Faculty and University Hospital Cologne, Department I of Internal Medicine, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany; University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Cologne, Germany.
  26. Andre Franke: Institute of Clinical Molecular Biology, Christian-Albrechts-University of Kiel, Kiel, Germany.
  27. Alexander Scheffold: Institute of Immunology, Christian-Albrechts-University of Kiel & UKSH Schleswig-Holstein, Kiel, Germany.

Abstract

CD4 T cells reactive against SARS-CoV-2 can be found in unexposed individuals, and these are suggested to arise in response to common cold coronavirus (CCCoV) infection. Here, we utilized SARS-CoV-2-reactive CD4 T cell enrichment to examine the antigen avidity and clonality of these cells, as well as the relative contribution of CCCoV cross-reactivity. SARS-CoV-2-reactive CD4 memory T cells were present in virtually all unexposed individuals examined, displaying low functional avidity and multiple, highly variable cross-reactivities that were not restricted to CCCoVs. SARS-CoV-2-reactive CD4 T cells from COVID-19 patients lacked cross-reactivity to CCCoVs, irrespective of strong memory T cell responses against CCCoV in all donors analyzed. In severe but not mild COVID-19, SARS-CoV-2-specific T cells displayed low functional avidity and clonality, despite increased frequencies. Our findings identify low-avidity CD4 T cell responses as a hallmark of severe COVID-19 and argue against a protective role for CCCoV-reactive T cells in SARS-CoV-2 infection.

Keywords

References

  1. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  2. JAMA. 2020 Mar 17;323(11):1061-1069 [PMID: 32031570]
  3. J Clin Microbiol. 2010 Aug;48(8):2940-7 [PMID: 20554810]
  4. Sci Transl Med. 2018 Mar 28;10(434): [PMID: 29593104]
  5. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  6. Nat Rev Immunol. 2020 Aug;20(8):457-458 [PMID: 32636479]
  7. Cell. 2019 Mar 7;176(6):1340-1355.e15 [PMID: 30799037]
  8. J Immunol. 2012 Mar 15;188(6):2537-44 [PMID: 22327072]
  9. Trends Immunol. 2006 Jul;27(7):303-7 [PMID: 16731040]
  10. Am J Respir Crit Care Med. 2015 Jun 15;191(12):1422-31 [PMID: 25844934]
  11. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  12. Immun Ageing. 2018 Aug 08;15:17 [PMID: 30093911]
  13. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  14. J Immunol. 2015 Nov 15;195(10):4699-711 [PMID: 26459351]
  15. Nat Immunol. 2021 Jan;22(1):74-85 [PMID: 32999467]
  16. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  17. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  18. Sci Immunol. 2020 Jun 26;5(48): [PMID: 32591408]
  19. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  20. Nat Rev Immunol. 2020 Sep;20(9):529-536 [PMID: 32728222]
  21. Bioinformatics. 2002 Jan;18(1):207-8 [PMID: 11836235]
  22. Cell. 2014 May 22;157(5):1073-87 [PMID: 24855945]
  23. Nat Med. 2013 Oct;19(10):1305-12 [PMID: 24056771]
  24. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  25. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  26. Cell. 2016 Nov 3;167(4):1067-1078.e16 [PMID: 27773482]
  27. Science. 2020 Oct 2;370(6512):89-94 [PMID: 32753554]
  28. Immunol Rev. 2010 May;235(1):244-66 [PMID: 20536568]
  29. Signal Transduct Target Ther. 2020 Mar 27;5(1):33 [PMID: 32296069]
  30. J Immunol. 2013 Apr 15;190(8):3967-76 [PMID: 23479226]
  31. Nat Immunol. 2019 May;20(5):613-625 [PMID: 30778243]
  32. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  33. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  34. Curr Opin Pharmacol. 2015 Aug;23:17-24 [PMID: 26004366]
  35. Proc Natl Acad Sci U S A. 2010 Jul 13;107(28):12599-604 [PMID: 20616031]
  36. Cytometry A. 2013 Aug;83(8):692-701 [PMID: 23788442]
  37. Immunity. 2013 Feb 21;38(2):373-83 [PMID: 23395677]
  38. Cell Mol Immunol. 2020 May;17(5):541-543 [PMID: 32203186]
  39. Nat Immunol. 2020 Nov;21(11):1336-1345 [PMID: 32887977]
  40. Nat Rev Immunol. 2012 Sep;12(9):669-77 [PMID: 22918468]
  41. Immun Ageing. 2014 May 13;11:9 [PMID: 24999367]
  42. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  43. J Exp Med. 2014 Jun 30;211(7):1273-80 [PMID: 24958850]
  44. Lancet Respir Med. 2020 May;8(5):475-481 [PMID: 32105632]

MeSH Term

Antigens, Viral
CD4-Positive T-Lymphocytes
COVID-19
Cells, Cultured
Cross Reactions
Disease Progression
Environmental Exposure
Humans
Immunologic Memory
Lymphocyte Activation
Protein Binding
Receptors, Antigen, T-Cell
Rhinovirus
SARS-CoV-2
Severity of Illness Index
T-Cell Antigen Receptor Specificity

Chemicals

Antigens, Viral
Receptors, Antigen, T-Cell

Word Cloud

Similar Articles

Cited By