Activation of Interferon-Stimulated Transcriptomes and ACE2 Isoforms in Human Airway Epithelium Is Curbed by Janus Kinase Inhibitors.

Hye Kyung Lee, Olive Jung, Lothar Hennighausen
Author Information
  1. Hye Kyung Lee: National Institute of Diabetes and Digestive and Kidney Diseases. ORCID
  2. Olive Jung: National Institutes of Health.
  3. Lothar Hennighausen: National Institute of Diabetes and Digestive and Kidney Diseases. ORCID

Abstract

SARS-CoV-2 infection of human airway epithelium activates genetic programs that lead to progressive hyperinflammation in COVID-19 patients. Here we report on genetic programs activated by interferons and the suppression by Janus kinase (JAK) inhibitors. The angiotensin-converting enzyme 2 (ACE2) is the receptor for SARS-CoV-2 and deciphering its regulation is paramount for understanding the cell tropism of SARS-CoV-2 infection. We identified candidate regulatory elements in the locus in human primary airway cells and lung tissue. Activating histone and promoter marks and Pol II loading characterize the intronic and define novel candidate enhancers distal to the genuine promoter and within additional introns. and to a lesser extent RNA levels increased in primary cells treated with interferons and this induction was mitigated by JAK inhibitors that are used therapeutically in COVID-19 patients. Our analyses provide insight into regulatory elements and highlight JAK inhibitors as suitable tools to suppress interferon-activated genetic programs in bronchial cells.

References

  1. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  2. Cell Rep. 2020 Sep 29;32(13):108199 [PMID: 32966801]
  3. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  4. JAKSTAT. 2013 Jul 1;2(3):e23931 [PMID: 24069549]
  5. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  6. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  7. Nat Genet. 2020 Dec;52(12):1283-1293 [PMID: 33077916]
  8. EMBO J. 2020 May 18;39(10):e105114 [PMID: 32246845]
  9. J Virol. 2012 Dec;86(24):13334-49 [PMID: 23015710]
  10. Nat Methods. 2015 Feb;12(2):115-21 [PMID: 25633503]
  11. Brief Bioinform. 2013 Mar;14(2):178-92 [PMID: 22517427]
  12. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  13. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  14. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  15. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  16. Leukemia. 2020 Jul;34(7):1805-1815 [PMID: 32518419]
  17. Sci Immunol. 2020 May 8;5(47): [PMID: 32385052]
  18. BMC Bioinformatics. 2016 Aug 11;17:305 [PMID: 27516195]
  19. Nat Genet. 2015 Dec;47(12):1393-401 [PMID: 26502339]
  20. Nat Genet. 2020 Dec;52(12):1294-1302 [PMID: 33077915]
  21. Clin Immunol. 2020 Sep;218:108517 [PMID: 32585295]
  22. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  23. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  24. Nucleic Acids Res. 2016 Feb 18;44(3):1052-63 [PMID: 26446995]
  25. Nat Biotechnol. 2014 Sep;32(9):896-902 [PMID: 25150836]