Patrick G Schweickert, Ning Wang, Stephanie L Sandefur, Michael E Lloyd, Stephen F Konieczny, Christopher C Frye, Zhuo Cheng
Hacker, D. L., De Jesus, M., & Wurm, F. M. (2009). 25 Years of recombinant proteins from reactor-grown cells - Where do we go from here? Biotechnol. Adv., 27, 1023-1027. https://doi.org/10.1016/j.biotechadv.2009.05.008
Schweickert, P. G., & Cheng, Z. (2019). Application of genetic engineering in biotherapeutics development. J. Pharm. Innov., 15, 232-254. https://doi.org/10.1007/s12247-019-09411-6
Lewis, N. E., Liu, X., Li, Y., Nagarajan, H., Yerganian, G., O'brien, E., … Palsson, B. O. (2013). Genomic landscapes of Chinese hamster ovary cell lines as revealed by the Cricetulus griseus draft genome. Nat. Biotechnol., 31, 759-765. https://doi.org/10.1038/nbt.2624
Xu, X., Nagarajan, H., Lewis, N. E., Pan, S., Cai, Z., Liu, X., … Wang, J. (2011). The genomic sequence of the Chinese hamster ovary (CHO)-K1 cell line. Nat. Biotechnol., 29, 735-741. https://doi.org/10.1038/nbt.1932
Adli, M. (2018). The CRISPR tool kit for genome editing and beyond. Nat. Commun., 9, 1-13. https://doi.org/10.1038/s41467-018-04252-2
Carroll, D. (2011). Genome engineering with zinc-finger nucleases. Genetics, 188, 773-782. https://doi.org/10.1534/genetics.111.131433
Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J. A., & Charpentier, E. (2012). A programmable dual-RNA-guided DNA endonuclease in adaptice bacterial immunity. Science, 337, 816-821. https://doi.org/10.1126/science.1225829
Cong, L., Ran, F. A., Cox, D., Lin, S., Barretto, R., Habib, N., … Zhang, F. (2013). Multiplex genome engineering using CRISPR/Cas systems. Science, 339, 819-823. https://doi.org/10.1126/science.1231143.Multiplex
Zetsche, B., Gootenberg, J. S., Abudayyeh, O. O., Slaymaker, I. M., Makarova, K. S., Essletzbichler, P., … Zhang, F. (2015). Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell, 163, 759-771. https://doi.org/10.1016/j.cell.2015.09.038
Liu, J.-J., Orlova, N., Oakes, B. L., Ma, E., Spinner, H. B., Baney, K. L. M., … Doudna, J. A. (2019). CasX enzymes comprise a distinct family of RNA-guided genome editors. Nature, 566, 218-223. https://doi.org/10.1038/s41586-019-0908-x
Swarts, D. C., & Jinek, M. (2018). Cas9 versus Cas12a/Cpf1: Structure - function comparisons and implications for genome editing. WIREs RNA, 9, 1-19. https://doi.org/10.1002/wrna.1481
Swarts, D. C., & Jinek, M. (2019). Mechanistic insights into the cis- and trans-acting DNase activities of Cas12a. Mol. Cell., 73(3), 589-600.e4. https://doi.org/10.1016/j.molcel.2018.11.021
Schmieder, V., Bydlinski, N., Strasser, R., Baumann, M., Kildegaard, H. F., Jadhav, V., & Borth, N. (2018). Enhanced genome editing tools for multi-gene deletion knock-out approaches using paired CRISPR sgRNAs in CHO cells. Biotechnol. J., 13, 1-10. https://doi.org/10.1002/biot.201700211
Kim, D., Kim, J., Hur, J. K., Been, K. W., Yoon, S.-H., & Kim, J.-S. (2016). Genome-wide analysis reveals specificities of Cpf1 endonucleases in human cells. Nat. Biotechnol., 34, 863-868. https://doi.org/10.1038/nbt.3609
Strohkendl, I., Saifuddin, F. A., Rybarski, J. R., Finkelstein, I. J., & Russell, R. (2018). Kinetic basis for DNA target specificity of CRISPR-Cas12a. Mol. Cell, 71, 816-824.e3. https://doi.org/10.1016/j.molcel.2018.06.043
Swarts, D. C., Van Der Oost, J., & Jinek, M. (2017). Structural basis for guide RNA processing and seed-dependent DNA targeting by CRISPR-Cas12a. Mol. Cell, 66, 221-233.e4. https://doi.org/10.1016/j.molcel.2017.03.016
Chenouard, V., Brusselle, L., Heslan, J.-M., Remy, S., Ménoret, S., Usal, C., … Tesson, L. (2016). A rapid and cost-effective method for genotyping genome-edited animals: A heteroduplex mobility assay using microfluidic capillary electrophoresis. J. Genet. Genomics, 43, 341-348. https://doi.org/10.1016/j.jgg.2016.04.005
Lonowski, L. A., Narimatsu, Y., Riaz, A., Delay, C. E., Yang, Z., Niola, F., … Frödin, M. (2017). Genome editing using FACS enrichment of nuclease-expressing cells and indel detection by amplicon analysis. Nat. Protoc., 12, 581-603. https://doi.org/10.1038/nprot.2016.165
Krebs, L., Gao, J., & Frye, C. (2015). Statistical verification that one round of fluorescence-activated cell sorting (FACS) can effectively generate a clonally-derived cell line. Bioprocess. J., 13, 6-19. https://doi.org/10.12665/j134.krebs
Hsu, P. D., Scott, D. A., Weinstein, J. A., Ran, F. A., Konermann, S., Agarwala, V., … Zhang, F. (2013). DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol., 31, 827-832. https://doi.org/10.1038/nbt.2647
Haeussler, M., Schönig, K., Eckert, H., Eschstruth, A., Mianné, J., Renaud, J.-B., … Concordet, J.-P. (2016). Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol., 17, 148. https://doi.org/10.1186/s13059-016-1012-2
Cost, G. J., Freyvert, Y., Vafiadis, A., Santiago, Y., Miller, J. C., Rebar, E., … Gregory, P. D. (2010). BAK and BAX deletion using zinc-finger nucleases yields apoptosis-resistant CHO cells. Biotechnol. Bioeng., 105, 330-340. https://doi.org/10.1002/bit.22541
Bin Moon, S., Lee, J. M., Kang, J. G., Lee, N.-E., Ha, D.-I., Kim, D. Y., … Kim, Y.-S. (2018). Highly efficient genome editing by CRISPR-Cpf1 using CRISPR RNA with a uridinylate-rich 3′-overhang. Nat. Commun., 9, 3651. https://doi.org/10.1038/s41467-018-06129-w
Gutiérrez, A. H., Moise, L., & De Groot, A. S. (2012). Of [hamsters] and men: A new perspective on host cell proteins. Hum. Vaccines Immunother., 8, 1172-1174. https://doi.org/10.4161/hv.22378
Hall, T., Sandefur, S. L., Frye, C. C., Tuley, T. L., & Huang, L. (2016). Polysorbates 20 and 80 degradation by group XV lysosomal phospholipase A2 isomer X1 in monoclonal antibody formulations. J. Pharm. Sci., 105, 1633-1642. https://doi.org/10.1016/j.xphs.2016.02.022
Wang, X., Hunter, A. K., & Mozier, N. M. (2009). Host cell proteins in biologics development: Identification, quantitation and risk assessment. Biotechnol. Bioeng., 103, 446-458. https://doi.org/10.1002/bit.22304
Valente, K. N., Levy, N. E., Lee, K. H., & Lenhoff, A. M. (2018). Applications of proteomic methods for CHO host cell protein characterization in biopharmaceutical manufacturing. Curr. Opin. Biotechnol., 53, 144-150. https://doi.org/10.1016/j.copbio.2018.01.004
Zhang, Q., Goetze, A. M., Cui, H., Wylie, J., Trimble, S., Hewig, A., & Flynn, G. C. (2014). Comprehensive tracking of host cell proteins during monoclonal antibody purifications using mass spectrometry. MAbs, 6, 659-670. https://doi.org/10.4161/mabs.28120
Laux, H., Romand, S., Nuciforo, S., Farady, C. J., Tapparel, J., Buechmann-Moeller, S., … Bodendorf, U. (2018). Degradation of recombinant proteins by Chinese hamster ovary host cell proteases is prevented by matriptase-1 knockout. Biotechnol. Bioeng., 115, 2530-2540. https://doi.org/10.1002/bit.26731
Chiu, J., Valente, K. N., Levy, N. E., Min, L., Lenhoff, A. M., & Lee, K. H. (2017). Knockout of a difficult-to-remove CHO host cell protein, lipoprotein lipase, for improved polysorbate stability in monoclonal antibody formulations. Biotechnol. Bioeng., 114, 1006-1015. https://doi.org/10.1002/bit.26237
Yamane-Ohnuki, N., Kinoshita, S., Inoue-Urakubo, M., Kusunoki, M., Iida, S., Nakano, R., … Satoh, M. (2004). Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol. Bioeng., 87, 614-622. https://doi.org/10.1002/bit.20151