Single-cell transcriptomic profiling provides insights into retinal endothelial barrier properties.

Mark I Watson, Peter Barabas, Mary McGahon, Megan McMahon, Marc A Fuchs, Tim M Curtis, David A Simpson
Author Information
  1. Mark I Watson: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
  2. Peter Barabas: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
  3. Mary McGahon: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
  4. Megan McMahon: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
  5. Marc A Fuchs: Genomics Core Technology Unit, Faculty of Medicine, Health & Life Sciences, Queen's University Belfast, Belfast, Northern Ireland.
  6. Tim M Curtis: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.
  7. David A Simpson: Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast, Northern Ireland.

Abstract

Purpose: To better characterize retinal endothelial barrier properties through analysis of individual transcriptomes of primary bovine retinal microvascular endothelial cells (RMECs).
Methods: Individual RMECs were captured on the Fluidigm C1 system, cDNA libraries were prepared using a Nextera XT kit, and sequencing was performed on a NextSeq system (Illumina). Data analysis was performed using R packages Scater, SC3, and Seurat, and the browser application Automated Single-cell Analysis Pipeline (ASAP). Alternative splicing events in single cells were quantified with Outrigger. Cytoscape was used for network analyses.
Results: Application of a single-cell RNA sequencing (scRNA-seq) analysis workflow showed that RMECs form a relatively homogeneous population in culture, with the main differences related to proliferation status. Expression of markers from along the arteriovenous tree suggested that most cells originated from capillaries. Average gene expression levels across all cells were used to develop an in silico model of the inner blood-retina barrier incorporating junctional proteins not previously reported within the retinal vasculature. Correlation of barrier gene expression among individual cells revealed a subgroup of genes highly correlated with PECAM-1 at the center of the correlation network. Numerous alternative splicing events involving exons within microvascular barrier genes were observed, and in many cases, individual cells expressed one isoform exclusively.
Conclusions: We optimized a workflow for single-cell transcriptomics in primary RMECs. The results provide fundamental insights into the genes involved in formation of the retinal-microvascular barrier.

References

  1. Cell. 2015 May 21;161(5):1202-1214 [PMID: 26000488]
  2. Bioinformatics. 2017 Oct 1;33(19):3123-3125 [PMID: 28541377]
  3. Anal Biochem. 2004 Oct 1;333(1):1-13 [PMID: 15351274]
  4. Cold Spring Harb Perspect Med. 2012 Jan;2(1):a006429 [PMID: 22315715]
  5. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  6. Bioinformatics. 2016 Oct 1;32(19):3047-8 [PMID: 27312411]
  7. Bioinformatics. 2011 Aug 1;27(15):2156-8 [PMID: 21653522]
  8. Curr Opin Biotechnol. 2019 Aug;58:129-136 [PMID: 30978643]
  9. Vision Res. 2017 Oct;139:123-137 [PMID: 28619516]
  10. Biochem Biophys Res Commun. 2002 Nov 15;298(5):657-66 [PMID: 12419305]
  11. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  12. Nature. 2018 Feb 22;554(7693):475-480 [PMID: 29443965]
  13. Bioinformatics. 2017 May 15;33(10):1545-1553 [PMID: 28137712]
  14. BMC Genomics. 2017 Feb 3;18(1):126 [PMID: 28158971]
  15. Cell. 2019 Mar 7;176(6):1248-1264 [PMID: 30849371]
  16. Nat Genet. 2008 Dec;40(12):1413-5 [PMID: 18978789]
  17. Biochim Biophys Acta. 2008 Mar;1778(3):601-13 [PMID: 18339298]
  18. Bioinformatics. 2012 Feb 1;28(3):373-80 [PMID: 22135418]
  19. Mol Cell. 2017 Jul 6;67(1):148-161.e5 [PMID: 28673540]
  20. Dev Cell. 2013 Sep 16;26(5):441-54 [PMID: 24044891]
  21. Mol Cell. 2017 Feb 16;65(4):631-643.e4 [PMID: 28212749]
  22. Bioinformatics. 2010 Nov 15;26(22):2927-8 [PMID: 20926419]
  23. J Proteome Res. 2019 Feb 1;18(2):623-632 [PMID: 30450911]
  24. J Cell Sci. 2009 May 15;122(Pt 10):1507-17 [PMID: 19383724]
  25. Nat Methods. 2017 May;14(5):483-486 [PMID: 28346451]
  26. Adv Exp Med Biol. 2012;763:85-104 [PMID: 23397620]
  27. Nat Biotechnol. 2015 Feb;33(2):155-60 [PMID: 25599176]
  28. Am J Physiol Renal Physiol. 2006 Dec;291(6):F1288-99 [PMID: 16804102]
  29. PLoS One. 2010 Jun 25;5(6):e11318 [PMID: 20593002]
  30. J Cell Sci. 2002 Aug 1;115(Pt 15):3171-80 [PMID: 12118072]
  31. J Biol Chem. 1996 Oct 11;271(41):25157-66 [PMID: 8810272]
  32. BMC Cell Biol. 2009 Dec 22;10:95 [PMID: 20028514]
  33. Prog Retin Eye Res. 2013 May;34:19-48 [PMID: 23416119]
  34. Genome Res. 2014 Mar;24(3):496-510 [PMID: 24299736]
  35. Nature. 2008 Nov 27;456(7221):470-6 [PMID: 18978772]
  36. RNA Biol. 2017 May 4;14(5):637-650 [PMID: 27442339]
  37. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  38. Genome Biol. 2019 Feb 11;20(1):30 [PMID: 30744673]
  39. Genomics. 2020 May;112(3):2418-2425 [PMID: 31981701]
  40. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  41. Am J Physiol. 1993 Apr;264(4 Pt 1):C918-24 [PMID: 7682777]
  42. Bioinformatics. 2017 Apr 15;33(8):1179-1186 [PMID: 28088763]
  43. Bioinformatics. 2013 Jan 1;29(1):15-21 [PMID: 23104886]
  44. Mol Cell Biol. 2012 Jan;32(2):242-50 [PMID: 22083955]
  45. Development. 1997 May;124(10):2027-37 [PMID: 9169849]
  46. Biochem Soc Trans. 2016 Aug 15;44(4):1079-85 [PMID: 27528755]
  47. Nat Biotechnol. 2011 Jan;29(1):24-6 [PMID: 21221095]
  48. Nature. 2013 Jun 13;498(7453):236-40 [PMID: 23685454]
  49. Invest Ophthalmol Vis Sci. 2019 Aug 1;60(10):3297-3309 [PMID: 31369032]
  50. Neuron. 2019 Jun 19;102(6):1111-1126.e5 [PMID: 31128945]
  51. Nat Methods. 2016 Jun;13(6):505-7 [PMID: 27088313]
  52. Am J Physiol. 1992 May;262(5 Pt 1):C1119-24 [PMID: 1590354]
  53. Nat Commun. 2017 Jan 16;8:14049 [PMID: 28091601]
  54. Genome Biol. 2018 Aug 10;19(1):110 [PMID: 30097058]
  55. Mol Biol Cell. 2000 Feb;11(2):627-34 [PMID: 10679019]

Grants

  1. MC_PC_15026/Medical Research Council
  2. BB/I026359/1/Biotechnology and Biological Sciences Research Council

MeSH Term

Alternative Splicing
Animals
Biomarkers
Blood-Retinal Barrier
Cattle
Computer Simulation
Endothelial Cells
Gene Expression Profiling
Models, Biological
Reproducibility of Results
Single-Cell Analysis

Chemicals

Biomarkers