Neurological Manifestations of COVID-19 Feature T Cell Exhaustion and Dedifferentiated Monocytes in Cerebrospinal Fluid.

Michael Heming, Xiaolin Li, Saskia Räuber, Anne K Mausberg, Anna-Lena Börsch, Maike Hartlehnert, Arpita Singhal, I-Na Lu, Michael Fleischer, Fabian Szepanowski, Oliver Witzke, Thorsten Brenner, Ulf Dittmer, Nir Yosef, Christoph Kleinschnitz, Heinz Wiendl, Mark Stettner, Gerd Meyer Zu Hörste
Author Information
  1. Michael Heming: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  2. Xiaolin Li: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  3. Saskia Räuber: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  4. Anne K Mausberg: Department of Neurology, University Hospital Essen, Essen, Germany.
  5. Anna-Lena Börsch: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  6. Maike Hartlehnert: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  7. Arpita Singhal: Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA.
  8. I-Na Lu: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  9. Michael Fleischer: Department of Neurology, University Hospital Essen, Essen, Germany.
  10. Fabian Szepanowski: Department of Neurology, University Hospital Essen, Essen, Germany.
  11. Oliver Witzke: Department of Infectious Diseases, West German Centre of Infectious Diseases, University Duisburg-Essen, Germany.
  12. Thorsten Brenner: Department of Anesthesiology and Intensive Care Medicine, University Hospital Essen, University Duisburg-Essen, Essen, Germany.
  13. Ulf Dittmer: Institute for Virology, University Hospital Essen, Germany.
  14. Nir Yosef: Department of Electrical Engineering and Computer Science and Center for Computational Biology, University of California Berkeley, Berkeley, CA, USA; Ragon Institute of MGH, MIT and Harvard, Cambridge, MA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
  15. Christoph Kleinschnitz: Department of Neurology, University Hospital Essen, Essen, Germany.
  16. Heinz Wiendl: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany.
  17. Mark Stettner: Department of Neurology, University Hospital Essen, Essen, Germany. Electronic address: mark.stettner@uk-essen.de.
  18. Gerd Meyer Zu Hörste: Department of Neurology with Institute of Translational Neurology, University Hospital Münster, Münster, Germany. Electronic address: gerd.meyerzuhoerste@ukmuenster.de.

Abstract

Patients suffering from Coronavirus disease 2019 (COVID-19) can develop neurological sequelae, such as headache and neuroinflammatory or cerebrovascular disease. These conditions-termed here as Neuro-COVID-are more frequent in patients with severe COVID-19. To understand the etiology of these neurological sequelae, we utilized single-cell sequencing and examined the immune cell profiles from the cerebrospinal fluid (CSF) of Neuro-COVID patients compared with patients with non-inflammatory and autoimmune neurological diseases or with viral encephalitis. The CSF of Neuro-COVID patients exhibited an expansion of dedifferentiated monocytes and of exhausted CD4 T cells. Neuro-COVID CSF leukocytes featured an enriched interferon signature; however, this was less pronounced than in viral encephalitis. Repertoire analysis revealed broad clonal T cell expansion and curtailed interferon response in severe compared with mild Neuro-COVID patients. Collectively, our findings document the CSF immune compartment in Neuro-COVID patients and suggest compromised antiviral responses in this setting.

Keywords

References

  1. Nature. 2018 Jun;558(7710):454-459 [PMID: 29899446]
  2. J Alzheimers Dis. 2020;76(1):3-19 [PMID: 32538857]
  3. Proc Natl Acad Sci U S A. 2020 Sep 15;117(37):22932-22943 [PMID: 32859762]
  4. Lancet Neurol. 2018 Feb;17(2):162-173 [PMID: 29275977]
  5. Immunity. 2020 Dec 15;53(6):1296-1314.e9 [PMID: 33296687]
  6. Neurology. 2020 Sep 15;95(11):e1479-e1487 [PMID: 32554771]
  7. Nat Commun. 2020 Nov 17;11(1):5859 [PMID: 33203833]
  8. J Neurol. 2014 Jan;261(1):130-43 [PMID: 24162037]
  9. Brain Behav Immun. 2020 Dec 24;: [PMID: 33359380]
  10. Nat Rev Dis Primers. 2018 Nov 8;4(1):43 [PMID: 30410033]
  11. J Immunol. 2020 Aug 15;205(4):915-922 [PMID: 32591393]
  12. BMC Genomics. 2018 Jun 19;19(1):477 [PMID: 29914354]
  13. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  14. Annu Rev Immunol. 2019 Apr 26;37:457-495 [PMID: 30676822]
  15. Bioinformatics. 2020 Apr 1;36(7):2311-2313 [PMID: 31764967]
  16. Brain. 2020 Oct 1;143(10):3104-3120 [PMID: 32637987]
  17. Cell Host Microbe. 2020 Oct 7;28(4):516-525.e5 [PMID: 32941787]
  18. Front Immunol. 2020 Dec 15;11:605170 [PMID: 33384691]
  19. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  20. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  21. Immunity. 2020 Sep 15;53(3):685-696.e3 [PMID: 32783921]
  22. Nat Commun. 2020 Jul 30;11(1):3801 [PMID: 32732879]
  23. Nat Commun. 2020 Jul 6;11(1):3434 [PMID: 32632085]
  24. Sci Immunol. 2020 Sep 17;5(51): [PMID: 32943497]
  25. Neurology. 2002 Nov 26;59(10):1492-5 [PMID: 12455560]
  26. Nat Methods. 2019 Dec;16(12):1289-1296 [PMID: 31740819]
  27. Eye (Lond). 2019 Mar;33(3):478-485 [PMID: 30356129]
  28. J Virol. 2014 Feb;88(3):1636-51 [PMID: 24257598]
  29. Nat Rev Neurol. 2020 Nov;16(11):636-644 [PMID: 32839585]
  30. Neurol Neuroimmunol Neuroinflamm. 2020 May 5;7(4): [PMID: 32371549]
  31. Nat Neurosci. 2019 Dec;22(12):2098-2110 [PMID: 31740814]
  32. Neurol Neuroimmunol Neuroinflamm. 2020 Sep 25;7(6): [PMID: 32978291]
  33. Lancet Infect Dis. 2021 Jan;21(1):22 [PMID: 32422205]
  34. Nat Commun. 2020 Jan 14;11(1):247 [PMID: 31937773]
  35. Neurology. 1983 Nov;33(11):1444-52 [PMID: 6685237]
  36. Lancet Microbe. 2020 Aug;1(4):e149 [PMID: 32835345]
  37. Lancet Psychiatry. 2020 Oct;7(10):875-882 [PMID: 32593341]
  38. F1000Res. 2020 Jan 27;9:47 [PMID: 32789006]
  39. Clin Infect Dis. 2020 Aug 08;: [PMID: 32770235]
  40. Neurology. 2020 Aug 25;95(8):e1060-e1070 [PMID: 32482845]
  41. BMC Bioinformatics. 2019 Jan 18;20(1):40 [PMID: 30658573]
  42. Immunity. 2020 Aug 18;53(2):442-455.e4 [PMID: 32668194]
  43. Nat Neurosci. 2020 Nov 30;: [PMID: 33257876]
  44. N Engl J Med. 2020 Jun 4;382(23):2268-2270 [PMID: 32294339]
  45. Trends Immunol. 2020 Apr;41(4):341-354 [PMID: 32147112]
  46. PLoS Pathog. 2012;8(5):e1002710 [PMID: 22615569]
  47. Lancet Neurol. 2020 Nov;19(11):919-929 [PMID: 33031735]
  48. Cell Mol Immunol. 2020 May;17(5):533-535 [PMID: 32203188]
  49. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  50. Elife. 2021 Jan 05;10: [PMID: 33399535]
  51. Radiology. 2020 Nov;297(2):E242-E251 [PMID: 32544034]
  52. J Immunol. 2011 Mar 15;186(6):3642-52 [PMID: 21317392]
  53. J Immunol. 2014 Mar 15;192(6):2551-63 [PMID: 24510966]
  54. Nat Rev Immunol. 2018 Feb;18(2):91-104 [PMID: 28990586]
  55. Cell. 2018 Feb 22;172(5):1091-1107.e17 [PMID: 29474909]
  56. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  57. Nature. 2020 Jan;577(7790):399-404 [PMID: 31915375]
  58. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  59. Nucleic Acids Res. 2016 Jul 8;44(W1):W90-7 [PMID: 27141961]
  60. Cell. 2020 Sep 17;182(6):1401-1418.e18 [PMID: 32810439]
  61. Cell Rep. 2019 Feb 5;26(6):1627-1640.e7 [PMID: 30726743]
  62. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  63. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  64. Immunol Rev. 2018 Jul;284(1):24-41 [PMID: 29944754]
  65. Nat Rev Immunol. 2012 Sep;12(9):623-35 [PMID: 22903150]
  66. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  67. Cell Mol Immunol. 2020 May;17(5):541-543 [PMID: 32203186]
  68. Lancet Neurol. 2020 Sep;19(9):767-783 [PMID: 32622375]
  69. Int J Infect Dis. 2020 Jul;96:567-569 [PMID: 32505878]
  70. JCI Insight. 2018 Sep 20;3(18): [PMID: 30232286]
  71. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  72. Immunity. 2020 Dec 15;53(6):1245-1257.e5 [PMID: 33326767]
  73. Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9466-9476 [PMID: 32295886]
  74. F1000Res. 2020 Apr 1;9:223 [PMID: 32765839]
  75. Cell. 2016 Sep 8;166(6):1500-1511.e9 [PMID: 27610572]
  76. J Neurol Sci. 2020 Nov 15;418:117090 [PMID: 32805440]
  77. Sci Immunol. 2018 Jan 19;3(19): [PMID: 29352091]
  78. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  79. Nat Immunol. 2007 Nov;8(11):1246-54 [PMID: 17906628]
  80. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  81. Lancet Respir Med. 2020 Sep;8(9):853-862 [PMID: 32735842]
  82. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]

MeSH Term

COVID-19
Cell Differentiation
Cerebrospinal Fluid
Encephalitis, Viral
Gene Expression Profiling
Humans
Interferons
Leukocytes
Lymphocyte Activation
Monocytes
Nervous System Diseases
Receptors, Antigen, T-Cell
SARS-CoV-2
Single-Cell Analysis
T-Lymphocytes

Chemicals

Receptors, Antigen, T-Cell
Interferons