Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2.

Abul Bashar Mir Md Khademul Islam, Md Abdullah-Al-Kamran Khan, Rasel Ahmed, Md Sabbir Hossain, Shah Md Tamim Kabir, Md Shahidul Islam, A M A M Zonaed Siddiki
Author Information
  1. Abul Bashar Mir Md Khademul Islam: Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh. khademul@du.ac.bd.
  2. Md Abdullah-Al-Kamran Khan: Department of Mathematics and Natural Sciences, BRAC University, Dhaka, Bangladesh.
  3. Rasel Ahmed: Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh.
  4. Md Sabbir Hossain: Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh.
  5. Shah Md Tamim Kabir: Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh.
  6. Md Shahidul Islam: Basic and Applied Research On Jute Project, Bangladesh Jute Research Institute, Dhaka, Bangladesh.
  7. A M A M Zonaed Siddiki: Department of Pathology and Parasitology, Chittagong Veterinary and Animal Sciences University (CVASU), Khulshi, Chittagong, Bangladesh.

Abstract

BACKGROUND: Although it is becoming evident that individual's immune system has a decisive influence on SARS-CoV-2 disease progression, pathogenesis is largely unknown. In this study, we aimed to profile the host transcriptome of COVID-19 patients from nasopharyngeal samples along with virus genomic features isolated from respective host, and a comparative analyses of differential host responses in various SARS-CoV-2 infection systems.
RESULTS: Unique and rare missense mutations in 3C-like protease observed in all of our reported isolates. Functional enrichment analyses exhibited that the host induced responses are mediated by innate immunity, interferon, and cytokine stimulation. Surprisingly, induction of apoptosis, phagosome, antigen presentation, hypoxia response was lacking within these patients. Upregulation of immune and cytokine signaling genes such as CCL4, TNFA, IL6, IL1A, CCL2, CXCL2, IFN, and CCR1 were observed in lungs. Lungs lacked the overexpression of ACE2 as suspected, however, high ACE2 but low DPP4 expression was observed in nasopharyngeal cells. Interestingly, directly or indirectly, viral proteins specially non-structural protein mediated overexpression of integrins such as ITGAV, ITGA6, ITGB7, ITGB3, ITGA2B, ITGA5, ITGA6, ITGA9, ITGA4, ITGAE, and ITGA8 in lungs compared to nasopharyngeal samples suggesting the possible way of enhanced invasion. Furthermore, we found comparatively highly expressed transcription factors such as CBP, CEBP, NFAT, ATF3, GATA6, HDAC2, TCF12 which have pivotal roles in lung injury.
CONCLUSIONS: Even though this study incorporates a limited number of cases, our data will provide valuable insights in developing potential studies to elucidate the differential host responses on the viral pathogenesis in COVID-19, and incorporation of further data will enrich the search of an effective therapeutics.

Keywords

References

  1. Virology. 2009 Jun 5;388(2):324-34 [PMID: 19409595]
  2. Bioinformatics. 2014 Aug 1;30(15):2114-20 [PMID: 24695404]
  3. Pathogens. 2017 Feb 15;6(1): [PMID: 28212305]
  4. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  5. Nat Commun. 2016 Aug 18;7:12564 [PMID: 27535718]
  6. J Cell Mol Med. 2017 Jun;21(6):1046-1057 [PMID: 28039939]
  7. Biochemistry. 2004 Apr 20;43(15):4568-74 [PMID: 15078103]
  8. Lancet. 2020 Feb 22;395(10224):565-574 [PMID: 32007145]
  9. J Innate Immun. 2011;3(3):274-9 [PMID: 21411975]
  10. J Cell Biochem. 2016 Feb;117(2):267-78 [PMID: 26206147]
  11. Emerg Microbes Infect. 2020 Dec;9(1):275-277 [PMID: 32005086]
  12. Am J Physiol Lung Cell Mol Physiol. 2001 Nov;281(5):L1037-50 [PMID: 11597894]
  13. Nucleic Acids Res. 2016 Jul 8;44(W1):W160-5 [PMID: 27079975]
  14. Int J Infect Dis. 2020 Apr;93:297-299 [PMID: 32147538]
  15. J Biomed Sci. 2006 May;13(3):281-93 [PMID: 16328780]
  16. Mol Biol Evol. 2013 Apr;30(4):772-80 [PMID: 23329690]
  17. Bioinformatics. 2015 May 15;31(10):1674-6 [PMID: 25609793]
  18. Proc Am Thorac Soc. 2012 Jul;9(3):126-9 [PMID: 22802286]
  19. Yi Chuan. 2020 Feb 20;42(2):212-221 [PMID: 32102777]
  20. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  21. PLoS One. 2010 Jan 15;5(1):e8729 [PMID: 20090954]
  22. Bioinformatics. 2014 Apr 1;30(7):1003-5 [PMID: 24227676]
  23. Genome Biol. 2016 Jun 06;17(1):122 [PMID: 27268795]
  24. Cell. 2020 Aug 20;182(4):812-827.e19 [PMID: 32697968]
  25. Nucleic Acids Res. 2013 May 1;41(10):e108 [PMID: 23558742]
  26. Am J Physiol Lung Cell Mol Physiol. 2003 Oct;285(4):L773-81 [PMID: 12959923]
  27. Emerg Microbes Infect. 2020 Dec;9(1):761-770 [PMID: 32228226]
  28. Innovation (Camb). 2020 May 21;1(1):100001 [PMID: 33554183]
  29. J Biol Chem. 2000 Jan 14;275(2):1043-9 [PMID: 10625644]
  30. JAMA. 2020 Jun 9;323(22):2245-2246 [PMID: 32391855]
  31. Nat Genet. 2000 May;25(1):25-9 [PMID: 10802651]
  32. Annu Rev Physiol. 2009;71:451-64 [PMID: 18817512]
  33. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  34. J Cell Physiol. 2017 Dec;232(12):3727-3734 [PMID: 28177121]
  35. Nature. 2020 Nov;587(7835):610-612 [PMID: 32998156]
  36. Bioinformatics. 2009 Feb 1;25(3):415-6 [PMID: 19106121]
  37. Arthritis Rheum. 2009 May;60(5):1530-9 [PMID: 19404954]
  38. Front Physiol. 2020 Jun 05;11:671 [PMID: 32581854]
  39. Nucleic Acids Res. 2013 Jan;41(Database issue):D991-5 [PMID: 23193258]
  40. Proc Natl Acad Sci U S A. 2016 Nov 15;113(46):12997-13002 [PMID: 27799534]
  41. Front Immunol. 2020 Jun 23;11:1439 [PMID: 32655577]
  42. Nat Commun. 2021 Mar 12;12(1):1660 [PMID: 33712587]
  43. Bioinformatics. 2018 Dec 1;34(23):4121-4123 [PMID: 29790939]
  44. Nucleic Acids Res. 2020 Jan 8;48(D1):D498-D503 [PMID: 31691815]
  45. Am J Physiol Lung Cell Mol Physiol. 2013 Feb 1;304(3):L135-42 [PMID: 23161886]
  46. Euro Surveill. 2017 Mar 30;22(13): [PMID: 28382917]
  47. Genome Res. 2003 Nov;13(11):2498-504 [PMID: 14597658]
  48. Front Cell Dev Biol. 2018 Nov 19;6:155 [PMID: 30510929]
  49. J Clin Invest. 2020 May 1;130(5):2202-2205 [PMID: 32217834]
  50. F1000 Biol Rep. 2013;5:3 [PMID: 23413371]
  51. Genome Biol. 2010;11(10):R106 [PMID: 20979621]
  52. Bioinformatics. 2010 Jan 1;26(1):139-40 [PMID: 19910308]
  53. Med Hypotheses. 2020 Oct;143:109877 [PMID: 32464496]
  54. PLoS One. 2011;6(5):e19541 [PMID: 21602921]
  55. Bioinformatics. 2009 May 1;25(9):1105-11 [PMID: 19289445]
  56. Antiviral Res. 2020 May;177:104759 [PMID: 32130973]
  57. Front Pharmacol. 2019 Apr 26;10:445 [PMID: 31133849]
  58. Nucleic Acids Res. 2010 Jul;38(12):e131 [PMID: 20395217]
  59. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613 [PMID: 30476243]
  60. PLoS One. 2013 Sep 30;8(9):e75592 [PMID: 24098703]
  61. Hypertens Res. 2020 Sep;43(9):985-986 [PMID: 32523133]
  62. J Infect. 2020 Jun;80(6):607-613 [PMID: 32283152]
  63. Nat Immunol. 2002 Nov;3(11):1019-25 [PMID: 12407410]
  64. Lancet. 2020 Feb 15;395(10223):497-506 [PMID: 31986264]
  65. Cell Rep. 2015 Feb 10;10(5):654-663 [PMID: 25660016]
  66. Am J Pathol. 2007 Apr;170(4):1136-47 [PMID: 17392154]
  67. Int J Obes (Lond). 2020 Sep;44(9):1807-1809 [PMID: 32647359]
  68. JCI Insight. 2019 Aug 8;5: [PMID: 31393853]
  69. Crit Care. 2010;14(2):209 [PMID: 20236452]
  70. J Med Virol. 2020 Oct;92(10):1741-1742 [PMID: 32246503]
  71. J Immunol. 2008 May 15;180(10):6947-53 [PMID: 18453616]
  72. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  73. Nature. 2001 Feb 15;409(6822):860-921 [PMID: 11237011]
  74. Nucleic Acids Res. 2007 Jan;35(Database issue):D610-7 [PMID: 17148474]
  75. Genomics. 2020 Sep;112(5):3226-3237 [PMID: 32540495]
  76. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  77. Nat Med. 2005 Aug;11(8):875-9 [PMID: 16007097]
  78. Annu Rev Microbiol. 2019 Sep 8;73:529-557 [PMID: 31226023]
  79. J Med Virol. 2020 Jul;92(7):726-730 [PMID: 32221983]
  80. Nucleic Acids Res. 2000 Jan 1;28(1):27-30 [PMID: 10592173]
  81. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  82. Mol Biol Evol. 2016 Jul;33(7):1870-4 [PMID: 27004904]
  83. Thorax. 1998 Jul;53(7):601-12 [PMID: 9797762]
  84. Am J Respir Cell Mol Biol. 2015 Dec;53(6):751-60 [PMID: 26378766]
  85. Int J Oral Sci. 2020 Feb 24;12(1):8 [PMID: 32094336]
  86. Nature. 2020 Jul;583(7816):459-468 [PMID: 32353859]
  87. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  88. Nat Rev Cardiol. 2020 May;17(5):259-260 [PMID: 32139904]
  89. JAMA. 2020 Apr 21;323(15):1502-1503 [PMID: 32105304]
  90. JAMA Neurol. 2020 Jun 1;77(6):683-690 [PMID: 32275288]
  91. PLoS Pathog. 2018 Dec 20;14(12):e1007390 [PMID: 30571771]
  92. Am J Physiol Lung Cell Mol Physiol. 2018 Jan 1;314(1):L6-L16 [PMID: 28860146]
  93. Nature. 2020 Jul;583(7816):437-440 [PMID: 32434211]
  94. Front Med (Lausanne). 2020 Jun 11;7:295 [PMID: 32596248]

MeSH Term

Adult
Aged, 80 and over
COVID-19
Coronavirus 3C Proteases
Cytokines
Female
Genetic Variation
Host Microbial Interactions
Humans
Immunity, Innate
Integrins
Lung
Male
Middle Aged
Models, Immunological
Mutation, Missense
Nasopharynx
Pandemics
RNA-Seq
SARS-CoV-2
Signal Transduction
Transcriptome
Translational Research, Biomedical

Chemicals

Cytokines
Integrins
3C-like proteinase, SARS-CoV-2
Coronavirus 3C Proteases

Word Cloud

Similar Articles

Cited By