Single-Cell RNA Sequencing of Tocilizumab-Treated Peripheral Blood Mononuclear Cells as an Model of Inflammation.
Arya Zarinsefat, George Hartoularos, Dmitry Rychkov, Priyanka Rashmi, Sindhu Chandran, Flavio Vincenti, Chun J Yee, Minnie M Sarwal
Author Information
Arya Zarinsefat: Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
George Hartoularos: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.
Dmitry Rychkov: Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
Priyanka Rashmi: Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
Sindhu Chandran: Department of Medicine, University of California, San Francisco, San Francisco, CA, United States.
Flavio Vincenti: Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
Chun J Yee: Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States.
Minnie M Sarwal: Department of Surgery, University of California, San Francisco, San Francisco, CA, United States.
中文译文
English
COVID-19 has posed a significant threat to global health. Early data has revealed that IL-6, a key regulatory cytokine, plays an important role in the cytokine storm of COVID-19. Multiple trials are therefore looking at the effects of Tocilizumab, an IL-6 receptor antibody that inhibits IL-6 activity, on treatment of COVID-19, with promising findings. As part of a clinical trial looking at the effects of Tocilizumab treatment on kidney transplant recipients with subclinical rejection, we performed single-cell RNA sequencing of comparing stimulated PBMCs before and after Tocilizumab treatment. We leveraged this data to create an cytokine storm model, to better understand the effects of Tocilizumab in the presence of inflammation. Tocilizumab-treated cells had reduced expression of inflammatory-mediated genes and biologic pathways, particularly amongst monocytes. These results support the hypothesis that Tocilizumab may hinder the cytokine storm of COVID-19, through a demonstration of biologic impact at the single-cell level.
N Engl J Med. 2003 Jul 10;349(2):125-38
[PMID: 12853585 ]
Clin Diagn Lab Immunol. 1996 May;3(3):301-4
[PMID: 8705673 ]
JAMA. 2020 Mar 17;323(11):1061-1069
[PMID: 32031570 ]
Transplantation. 2020 Apr;104(4):856-863
[PMID: 31385933 ]
Nephrol Dial Transplant. 2021 Mar 29;36(4):599-608
[PMID: 31883338 ]
Sci Rep. 2015 Sep 11;5:13886
[PMID: 26358827 ]
Proc Natl Acad Sci U S A. 2019 Jun 11;116(24):11906-11915
[PMID: 31118283 ]
Front Genet. 2021 Jan 05;11:610682
[PMID: 33469465 ]
Lancet. 2020 Feb 15;395(10223):497-506
[PMID: 31986264 ]
Lancet Glob Health. 2020 May;8(5):e639-e640
[PMID: 32199468 ]
Cell. 2019 Jun 13;177(7):1888-1902.e21
[PMID: 31178118 ]
Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3
[PMID: 32320677 ]
Sci Immunol. 2018 Jan 19;3(19):
[PMID: 29352091 ]
EBioMedicine. 2020 Mar;53:102686
[PMID: 32114394 ]
JAMA. 2020 Apr 7;323(13):1239-1242
[PMID: 32091533 ]
Lancet. 2020 Feb 15;395(10223):514-523
[PMID: 31986261 ]
Nat Protoc. 2009;4(8):1184-91
[PMID: 19617889 ]
Int Ophthalmol Clin. 2020 Spring;60(2):57-62
[PMID: 32205653 ]
Blood. 2014 Jul 10;124(2):188-95
[PMID: 24876563 ]
Nat Commun. 2020 Aug 6;11(1):3924
[PMID: 32764665 ]
Oncol Rep. 2019 Jun;41(6):3219-3232
[PMID: 31002364 ]
J Immunol. 2008 Dec 1;181(11):8018-26
[PMID: 19017994 ]
OMICS. 2012 May;16(5):284-7
[PMID: 22455463 ]
J Allergy Clin Immunol. 2020 Jul;146(1):110-118
[PMID: 32294485 ]
Br J Haematol. 2020 May;189(3):428-437
[PMID: 32297671 ]
Genome Biol. 2014;15(12):550
[PMID: 25516281 ]
J Med Virol. 2020 Jul;92(7):814-818
[PMID: 32253759 ]
Arthritis Rheum. 2011 Jan;63(1):43-52
[PMID: 21204103 ]
Nat Immunol. 2021 Jan;22(1):19-24
[PMID: 33208929 ]
Nat Methods. 2017 Mar;14(3):309-315
[PMID: 28114287 ]
Viruses. 2020 Feb 25;12(3):
[PMID: 32106567 ]
Clin Infect Dis. 2020 Nov 5;71(8):1937-1942
[PMID: 32301997 ]
Genome Biol. 2019 Dec 23;20(1):296
[PMID: 31870423 ]
Nat Commun. 2019 Oct 17;10(1):4706
[PMID: 31624246 ]
Transplantation. 2017 Jan;101(1):32-44
[PMID: 27547870 ]
Cells. 2020 May 25;9(5):
[PMID: 32466296 ]
Nat Rev Immunol. 2020 May;20(5):277
[PMID: 32249847 ]
J Rheumatol. 2011 Jan;38(1):10-20
[PMID: 20952462 ]
Curr Opin Immunol. 2015 Jun;34:75-82
[PMID: 25749511 ]
Front Immunol. 2018 Nov 20;9:2692
[PMID: 30515169 ]
BMC Bioinformatics. 2017 Mar 2;18(1):142
[PMID: 28249561 ]
Immunity. 2019 Feb 19;50(2):493-504.e7
[PMID: 30737144 ]
Nat Biotechnol. 2018 Jun;36(5):411-420
[PMID: 29608179 ]
Nat Rev Immunol. 2020 Jul;20(7):448
[PMID: 32488203 ]
Nat Immunol. 2015 May;16(5):448-57
[PMID: 25898198 ]
Am J Transplant. 2017 Sep;17(9):2381-2389
[PMID: 28199785 ]
Microbiol Mol Biol Rev. 2012 Mar;76(1):16-32
[PMID: 22390970 ]
Database (Oxford). 2013 Jul 09;2013:bat054
[PMID: 23842463 ]
JAMA. 2020 May 12;323(18):1775-1776
[PMID: 32203977 ]
J Infect. 2020 Jun;80(6):607-613
[PMID: 32283152 ]
Proc Natl Acad Sci U S A. 2020 May 19;117(20):10970-10975
[PMID: 32350134 ]
Cell. 2020 Sep 17;182(6):1419-1440.e23
[PMID: 32810438 ]
Natl Sci Rev. 2020 Jun;7(6):998-1002
[PMID: 34676125 ]
Nat Biotechnol. 2020 Aug;38(8):970-979
[PMID: 32591762 ]
Rheumatology (Oxford). 2011 Mar;50(3):552-62
[PMID: 21078627 ]
Cell Discov. 2020 May 4;6:31
[PMID: 32377375 ]
Lancet. 2020 Mar 28;395(10229):1033-1034
[PMID: 32192578 ]
J Immunol. 2017 Feb 15;198(4):1553-1564
[PMID: 28087664 ]
Science. 2020 Sep 4;369(6508):1210-1220
[PMID: 32788292 ]
Vaccine. 2006 Feb 13;24(7):872-83
[PMID: 16176850 ]
Front Immunol. 2013 Jul 15;4:195
[PMID: 23874341 ]
Front Immunol. 2018 Jul 30;9:1726
[PMID: 30105020 ]
Blood. 2010 Nov 4;116(18):3465-74
[PMID: 20660289 ]
J Immunol. 2016 Apr 1;196(7):2923-31
[PMID: 26994304 ]
Front Immunol. 2020 May 29;11:941
[PMID: 32547543 ]
MR/L023784/1/Medical Research Council
U19 AI128913/NIAID NIH HHS
U01 AI113362/NIAID NIH HHS
T32 AI125222/NIAID NIH HHS
R01 DK109720/NIDDK NIH HHS