Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8 T cells.

Anthony Kusnadi, Ciro Ramírez-Suástegui, Vicente Fajardo, Serena J Chee, Benjamin J Meckiff, Hayley Simon, Emanuela Pelosi, Grégory Seumois, Ferhat Ay, Pandurangan Vijayanand, Christian H Ottensmeier
Author Information
  1. Anthony Kusnadi: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  2. Ciro Ramírez-Suástegui: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  3. Vicente Fajardo: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  4. Serena J Chee: NIHR and CRUK Southampton Experimental Cancer Medicine Center, Faculty of Medicine, University of Southampton, Southampton, UK. ORCID
  5. Benjamin J Meckiff: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  6. Hayley Simon: La Jolla Institute for Immunology, La Jolla, CA 92037.
  7. Emanuela Pelosi: Southampton Specialist Virology Centre, Department of Infection, University Hospital Southampton NHS Foundation Trust, Southampton, UK.
  8. Grégory Seumois: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  9. Ferhat Ay: La Jolla Institute for Immunology, La Jolla, CA 92037. ORCID
  10. Pandurangan Vijayanand: La Jolla Institute for Immunology, La Jolla, CA 92037. vijay@lji.org cottensmeier@lji.org. ORCID
  11. Christian H Ottensmeier: La Jolla Institute for Immunology, La Jolla, CA 92037. vijay@lji.org cottensmeier@lji.org. ORCID

Abstract

The molecular properties of CD8 T cells that respond to SARS-CoV-2 infection are not fully known. Here, we report on the single-cell transcriptomes of >80,000 virus-reactive CD8 T cells, obtained using a modified Antigen-Reactive T cell Enrichment (ARTE) assay, from 39 COVID-19 patients and 10 healthy subjects. COVID-19 patients segregated into two groups based on whether the dominant CD8 T cell response to SARS-CoV-2 was 'exhausted' or not. SARS-CoV-2-reactive cells in the exhausted subset were increased in frequency and displayed lesser cytotoxicity and inflammatory features in COVID-19 patients with mild compared to severe illness. In contrast, SARS-CoV-2-reactive cells in the dominant non-exhausted subset from patients with severe disease showed enrichment of transcripts linked to co-stimulation, pro-survival NF-κB signaling, and anti-apoptotic pathways, suggesting the generation of robust CD8 T cell memory responses in patients with severe COVID-19 illness. CD8 T cells reactive to influenza and respiratory syncytial virus from healthy subjects displayed polyfunctional features and enhanced glycolysis. Cells with such features were largely absent in SARS-CoV-2-reactive cells from both COVID-19 patients and healthy controls non-exposed to SARS-CoV-2. Overall, our single-cell analysis revealed substantial diversity in the nature of CD8 T cells responding to SARS-CoV-2.

References

  1. Nat Genet. 2019 Oct;51(10):1486-1493 [PMID: 31548716]
  2. Sci Rep. 2021 Mar 29;11(1):7052 [PMID: 33782412]
  3. Nature. 2017 Sep 7;549(7670):111-115 [PMID: 28854172]
  4. Nat Med. 2018 Jul;24(7):994-1004 [PMID: 29892065]
  5. Sci Rep. 2019 Apr 5;9(1):5747 [PMID: 30952998]
  6. Cell. 2018 Nov 29;175(6):1701-1715.e16 [PMID: 30449622]
  7. Nature. 2020 Aug;584(7821):457-462 [PMID: 32668444]
  8. Immunity. 2017 Nov 21;47(5):848-861.e5 [PMID: 29126798]
  9. Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4481-4488 [PMID: 30787194]
  10. Immunity. 2012 Dec 14;37(6):1130-44 [PMID: 23159438]
  11. Nat Genet. 2019 Oct;51(10):1494-1505 [PMID: 31570894]
  12. Nat Med. 2020 Jun;26(6):932-940 [PMID: 32393800]
  13. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15016-21 [PMID: 18809920]
  14. Cell. 2018 Nov 1;175(4):998-1013.e20 [PMID: 30388456]
  15. Nat Med. 2020 Apr;26(4):453-455 [PMID: 32284614]
  16. J Immunol. 2016 Sep 1;197(5):1809-22 [PMID: 27448585]
  17. Antiviral Res. 2012 May;94(2):168-78 [PMID: 22504097]
  18. Cell. 2020 Oct 1;183(1):158-168.e14 [PMID: 32979941]
  19. Science. 2013 Apr 12;340(6129):207-11 [PMID: 23580529]
  20. Nat Immunol. 2019 Mar;20(3):326-336 [PMID: 30778252]
  21. Nat Commun. 2019 Dec 4;10(1):5531 [PMID: 31797935]
  22. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  23. Cell. 2020 Jun 25;181(7):1489-1501.e15 [PMID: 32473127]
  24. Nat Rev Immunol. 2007 Dec;7(12):923-7 [PMID: 17965637]
  25. Cell. 2018 Nov 1;175(4):984-997.e24 [PMID: 30388455]
  26. Science. 2016 Apr 22;352(6284):459-63 [PMID: 27102484]
  27. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  28. Nat Commun. 2020 Jul 6;11(1):3434 [PMID: 32632085]
  29. J Immunol. 2009 Oct 1;183(7):4220-8 [PMID: 19752223]
  30. Science. 2013 Apr 12;340(6129):202-7 [PMID: 23580528]
  31. Cell Rep Med. 2020 Sep 22;1(6):100092 [PMID: 32904468]
  32. Cell. 2019 Feb 7;176(4):775-789.e18 [PMID: 30595452]
  33. Science. 2020 Oct 23;370(6515): [PMID: 32972995]
  34. Nat Commun. 2014 Apr 03;5:3551 [PMID: 24699451]
  35. J Virol. 2008 Apr;82(7):3353-68 [PMID: 18199651]
  36. Immunity. 2008 Feb;28(2):218-30 [PMID: 18275832]
  37. Vaccine. 2002 May 6;20(15):1918-21 [PMID: 11983245]
  38. J Clin Invest. 2020 Feb 3;130(2):768-773 [PMID: 31904582]
  39. Cell. 2020 Nov 25;183(5):1340-1353.e16 [PMID: 33096020]
  40. Sci Immunol. 2020 Jun 26;5(48): [PMID: 32591408]
  41. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15818-23 [PMID: 14673093]
  42. Nat Cell Biol. 2019 Jan;21(1):85-93 [PMID: 30602764]
  43. Immunity. 2019 Dec 17;51(6):1119-1135.e5 [PMID: 31757672]
  44. Proc Natl Acad Sci U S A. 2020 Sep 29;117(39):24384-24391 [PMID: 32913053]
  45. J Clin Invest. 2010 Dec;120(12):4546-57 [PMID: 21084749]
  46. Nat Med. 2021 Jan;27(1):78-85 [PMID: 33184509]
  47. Gastroenterology. 2011 Oct;141(4):1422-31, 1431.e1-6 [PMID: 21763239]
  48. Clin Immunol. 2008 Feb;126(2):222-34 [PMID: 17942371]
  49. J Immunol. 2009 Dec 15;183(12):7919-30 [PMID: 19933869]
  50. Front Immunol. 2015 Jun 26;6:310 [PMID: 26167163]
  51. Science. 2020 Oct 23;370(6515): [PMID: 32972996]
  52. JCI Insight. 2019 Feb 21;4(4): [PMID: 30830870]
  53. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  54. Nat Immunol. 2020 Apr;21(4):388-399 [PMID: 32205878]
  55. Nat Commun. 2020 Jul 8;11(1):3410 [PMID: 32641700]
  56. Nat Rev Immunol. 2010 Jul;10(7):514-26 [PMID: 20577268]
  57. Front Immunol. 2017 Dec 13;8:1809 [PMID: 29326701]
  58. Nature. 2020 Nov;587(7833):270-274 [PMID: 32726801]
  59. J Virol. 2012 Jan;86(2):1001-9 [PMID: 22072753]
  60. Cell. 2016 Nov 3;167(4):1067-1078.e16 [PMID: 27773482]
  61. Front Immunol. 2018 Dec 20;9:2987 [PMID: 30619342]
  62. Science. 2020 Oct 2;370(6512):89-94 [PMID: 32753554]
  63. Front Immunol. 2019 Nov 06;10:2568 [PMID: 31781096]
  64. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  65. Vaccine. 1998 Mar;16(5):439-45 [PMID: 9491498]
  66. Nat Rev Immunol. 2020 May;20(5):269-270 [PMID: 32273594]
  67. Nat Med. 2018 Jul;24(7):978-985 [PMID: 29942094]
  68. J Immunol. 2013 Apr 15;190(8):3967-76 [PMID: 23479226]
  69. Nature. 2019 Jul;571(7764):211-218 [PMID: 31207603]
  70. Nature. 2019 Dec;576(7786):293-300 [PMID: 31802004]
  71. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  72. Cytokine Growth Factor Rev. 2008 Apr;19(2):121-32 [PMID: 18321765]
  73. Nat Biotechnol. 2014 Apr;32(4):381-386 [PMID: 24658644]
  74. Cell Rep Med. 2020 Sep 22;1(6):100081 [PMID: 32839763]
  75. Science. 2014 Sep 12;345(6202):1254665 [PMID: 25214635]
  76. Crit Rev Immunol. 2009;29(6):469-86 [PMID: 20121696]
  77. Nat Immunol. 2019 Jul;20(7):890-901 [PMID: 31209400]
  78. Proc Natl Acad Sci U S A. 2007 Oct 9;104(41):16233-8 [PMID: 17911249]
  79. Immunity. 2017 Oct 17;47(4):648-663.e8 [PMID: 29045899]
  80. Nature. 2016 Sep 15;537(7620):417-421 [PMID: 27501248]
  81. Cell. 2019 Mar 7;176(6):1340-1355.e15 [PMID: 30799037]
  82. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  83. Nat Rev Immunol. 2019 Nov;19(11):665-674 [PMID: 31570879]
  84. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  85. Bioinformatics. 2017 Sep 15;33(18):2938-2940 [PMID: 28645171]
  86. Immunity. 2019 Sep 17;51(3):491-507.e7 [PMID: 31533057]
  87. Science. 2012 Nov 30;338(6111):1220-5 [PMID: 23197535]
  88. Science. 2016 Apr 8;352(6282):189-96 [PMID: 27124452]
  89. Adv Exp Med Biol. 2015;850:137-52 [PMID: 26324351]
  90. Cell Mol Immunol. 2020 May;17(5):541-543 [PMID: 32203186]
  91. Cell. 2017 Jun 15;169(7):1342-1356.e16 [PMID: 28622514]
  92. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  93. Nat Immunol. 2020 Nov;21(11):1336-1345 [PMID: 32887977]
  94. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  95. Immunity. 2020 Jun 16;52(6):971-977.e3 [PMID: 32413330]
  96. Cell. 2016 Sep 8;166(6):1500-1511.e9 [PMID: 27610572]
  97. J Exp Med. 2016 Aug 22;213(9):1799-818 [PMID: 27481131]
  98. Front Cell Dev Biol. 2018 Sep 25;6:122 [PMID: 30320109]
  99. Sci Immunol. 2016 Dec 23;1(6): [PMID: 28018990]
  100. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  101. Cold Spring Harb Perspect Biol. 2010 May;2(5):a000182 [PMID: 20452952]

Grants

  1. S10 OD025052/NIH HHS
  2. S10 RR027366/NCRR NIH HHS
  3. R01 HL114093/NHLBI NIH HHS
  4. U19 AI118626/NIAID NIH HHS
  5. U19 AI142742/NIAID NIH HHS
  6. U01 CA260588/NCI NIH HHS
  7. R35 GM128938/NIGMS NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
CD8-Positive T-Lymphocytes
COVID-19
Female
Glycolysis
Humans
Immunologic Memory
Male
Middle Aged
NF-kappa B
SARS-CoV-2
Signal Transduction
Single-Cell Analysis
Young Adult

Chemicals

NF-kappa B