Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance.

Yaodong Yang, Stéphanie Bocs, Haikuo Fan, Alix Armero, Luc Baudouin, Pengwei Xu, Junyang Xu, Dominique This, Chantal Hamelin, Amjad Iqbal, Rashad Qadri, Lixia Zhou, Jing Li, Yi Wu, Zilong Ma, Auguste Emmanuel Issali, Ronan Rivallan, Na Liu, Wei Xia, Ming Peng, Yong Xiao
Author Information
  1. Yaodong Yang: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. ORCID
  2. Stéphanie Bocs: CIRAD, UMR AGAP, F-34398, Montpellier, France. ORCID
  3. Haikuo Fan: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  4. Alix Armero: AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
  5. Luc Baudouin: CIRAD, UMR AGAP, F-34398, Montpellier, France. luc.baudouin@cirad.fr. ORCID
  6. Pengwei Xu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  7. Junyang Xu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  8. Dominique This: AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France. ORCID
  9. Chantal Hamelin: CIRAD, UMR AGAP, F-34398, Montpellier, France.
  10. Amjad Iqbal: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. ORCID
  11. Rashad Qadri: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  12. Lixia Zhou: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  13. Jing Li: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  14. Yi Wu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  15. Zilong Ma: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China.
  16. Auguste Emmanuel Issali: Station Cocotier Marc Delorme, Centre National De Recherche Agronomique (CNRA)07 B.P. 13, Port Bouet, Côte d'Ivoire.
  17. Ronan Rivallan: CIRAD, UMR AGAP, F-34398, Montpellier, France.
  18. Na Liu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  19. Wei Xia: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. saizjxiawei@hainu.edu.cn. ORCID
  20. Ming Peng: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China. pengming@itbb.org.cn. ORCID
  21. Yong Xiao: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. xiaoyong1980@catas.cn. ORCID

Abstract

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.

References

  1. Rice (N Y). 2013 Oct 28;6(1):27 [PMID: 24280112]
  2. Genet Res (Camb). 2011 Oct;93(5):343-9 [PMID: 21878144]
  3. FEBS Lett. 2001 Sep 14;505(2):233-9 [PMID: 11566182]
  4. Genesis. 2015 Aug;53(8):474-85 [PMID: 26201819]
  5. Annu Rev Genet. 1999;33:479-532 [PMID: 10690416]
  6. Plant Signal Behav. 2011 Apr;6(4):558-62 [PMID: 21445013]
  7. PLoS One. 2015 Apr 17;10(4):e0125168 [PMID: 25886365]
  8. Bioinformatics. 2003 Feb 12;19(3):362-7 [PMID: 12584121]
  9. J Exp Bot. 2014 Mar;65(3):849-58 [PMID: 24151301]
  10. Plant Mol Biol. 2000 Jan;42(1):251-69 [PMID: 10688140]
  11. Nature. 2006 Oct 5;443(7111):521-4 [PMID: 17024082]
  12. G3 (Bethesda). 2017 Jun 7;7(6):1875-1885 [PMID: 28413161]
  13. New Phytol. 2007;175(3):387-404 [PMID: 17635215]
  14. PeerJ. 2019 Aug 14;7:e7504 [PMID: 31428542]
  15. Genome Biol Evol. 2018 Aug 1;10(8):2140-2150 [PMID: 30102348]
  16. Front Plant Sci. 2014 Apr 22;5:151 [PMID: 24795738]
  17. Trends Plant Sci. 2015 Sep;20(9):586-94 [PMID: 26205171]
  18. Nature. 2013 May 30;497(7451):579-84 [PMID: 23698360]
  19. Plant Signal Behav. 2016;11(4):e1165381 [PMID: 27043750]
  20. BMC Genomics. 2007 Jul 06;8:218 [PMID: 17617907]
  21. Theor Appl Genet. 2009 Oct;119(6):1093-103 [PMID: 19693484]
  22. Genome Biol. 2009;10(3):R25 [PMID: 19261174]
  23. J Exp Bot. 2014 Mar;65(5):1241-57 [PMID: 24368505]
  24. Plant Cell. 2000 Jun;12(6):837-51 [PMID: 10852932]
  25. J Plant Physiol. 2009 Mar 15;166(5):447-66 [PMID: 19217185]
  26. G3 (Bethesda). 2014 Jan 10;4(1):29-37 [PMID: 24192835]
  27. Genome Biol Evol. 2019 May 1;11(5):1501-1511 [PMID: 31028709]
  28. Plant Mol Biol. 2000 Jan;42(1):225-49 [PMID: 10688139]
  29. Nat Commun. 2014 Oct 28;5:5315 [PMID: 25350882]
  30. Bioinformatics. 2010 Mar 1;26(5):589-95 [PMID: 20080505]
  31. PLoS One. 2015 Dec 18;10(12):e0145385 [PMID: 26684618]
  32. Ann Bot. 2005 Jan;95(1):127-32 [PMID: 15596462]
  33. Nat Genet. 1998 Sep;20(1):43-5 [PMID: 9731528]
  34. Genet Mol Res. 2016 Feb 11;15(1): [PMID: 26909966]
  35. Nat Commun. 2013;4:2274 [PMID: 23917264]
  36. PLoS One. 2011 May 04;6(5):e19379 [PMID: 21573248]
  37. Plant Sci. 2016 Nov;252:324-334 [PMID: 27717469]
  38. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19243-8 [PMID: 16357197]
  39. Bioinformatics. 2010 Oct 15;26(20):2509-16 [PMID: 20736338]
  40. Chromosoma. 2016 Jun;125(2):301-8 [PMID: 26801812]
  41. Nat Commun. 2018 Jul 6;9(1):2638 [PMID: 29980662]
  42. Plant Cell. 2014 Jul;26(7):2792-802 [PMID: 25082857]
  43. G3 (Bethesda). 2019 Aug 8;9(8):2377-2393 [PMID: 31167834]
  44. PLoS One. 2013;8(3):e59997 [PMID: 23555859]
  45. PLoS One. 2013 Jul 29;8(7):e71118 [PMID: 23923055]
  46. Mol Ecol. 2013 Mar;22(6):1503-17 [PMID: 23293987]
  47. BMC Genomics. 2016 Mar 16;17:243 [PMID: 26984673]
  48. PLoS One. 2014 Feb 28;9(2):e90346 [PMID: 24587335]
  49. Curr Opin Genet Dev. 1995 Dec;5(6):814-21 [PMID: 8745082]
  50. Bioinformatics. 2015 Oct 1;31(19):3210-2 [PMID: 26059717]
  51. G3 (Bethesda). 2014 Sep 04;4(11):2147-57 [PMID: 25193496]
  52. J Neurosci. 2010 Jun 2;30(22):7554-62 [PMID: 20519529]
  53. Mol Ecol Resour. 2017 May;17(3):565-580 [PMID: 27487989]
  54. PLoS One. 2011;6(6):e21143 [PMID: 21731660]
  55. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 [PMID: 10823912]
  56. PLoS Genet. 2009 Nov;5(11):e1000732 [PMID: 19936065]
  57. Cladistics. 2015 Oct;31(5):509-534 [PMID: 34772273]
  58. Genome Res. 2009 May;19(5):943-57 [PMID: 19218533]
  59. Front Plant Sci. 2016 May 04;7:571 [PMID: 27200044]
  60. Genome Res. 2004 May;14(5):860-9 [PMID: 15078861]
  61. Genome Res. 2009 Sep;19(9):1639-45 [PMID: 19541911]
  62. Nat Genet. 2017 Apr;49(4):490-496 [PMID: 28288112]
  63. Annu Rev Plant Biol. 2008;59:651-81 [PMID: 18444910]
  64. Genome Biol. 2004;5(10):R79 [PMID: 15461797]
  65. BMC Bioinformatics. 2011 Aug 04;12:323 [PMID: 21816040]
  66. Front Plant Sci. 2015 Nov 27;6:1059 [PMID: 26640476]
  67. Bioinformatics. 2013 Jun 15;29(12):1492-7 [PMID: 23698863]
  68. Genet Mol Biol. 2017;40(1 suppl 1):326-345 [PMID: 28350038]
  69. Comput Appl Biosci. 1997 Oct;13(5):555-6 [PMID: 9367129]
  70. J Exp Bot. 2014 Jul;65(12):2963-79 [PMID: 24755280]
  71. Nucleic Acids Res. 2013 Jan;41(Database issue):D1172-5 [PMID: 23161680]
  72. Ann Bot. 2014 Mar;113(4):565-70 [PMID: 24368197]
  73. Nat Genet. 2013 May;45(5):487-94 [PMID: 23525075]
  74. BMC Bioinformatics. 2004 Aug 19;5:113 [PMID: 15318951]
  75. Plant Cell Rep. 2013 Jul;32(7):959-70 [PMID: 23535869]
  76. Protein Cell. 2013 Jul;4(7):493-501 [PMID: 23794032]
  77. Genetics. 2005 Feb;169(2):1033-43 [PMID: 15731520]
  78. Plant Cell. 1999 Sep;11(9):1769-1784 [PMID: 10488242]
  79. Theor Appl Genet. 2019 Jun;132(6):1733-1744 [PMID: 30783744]
  80. Nature. 2013 Aug 15;500(7462):335-9 [PMID: 23883927]
  81. Nature. 2015 Nov 26;527(7579):508-11 [PMID: 26560029]
  82. Gigascience. 2017 Nov 1;6(11):1-11 [PMID: 29048487]
  83. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 [PMID: 26553804]
  84. BMC Plant Biol. 2010 Jul 16;10:149 [PMID: 20637079]
  85. Trends Plant Sci. 2013 May;18(5):259-66 [PMID: 23265948]
  86. Front Plant Sci. 2015 Dec 01;6:1077 [PMID: 26648959]
  87. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9 [PMID: 8816790]
  88. Am J Bot. 2015 Oct;102(10):1625-33 [PMID: 26437888]

MeSH Term

Biological Evolution
Chromosome Mapping
Chromosomes, Plant
Cocos
DNA Transposable Elements
Genome, Plant
Genotyping Techniques
Reference Standards
Salt Tolerance
Signal Transduction

Chemicals

DNA Transposable Elements

Word Cloud

Similar Articles

Cited By