Coconut genome assembly enables evolutionary analysis of palms and highlights signaling pathways involved in salt tolerance.

Yaodong Yang, Stéphanie Bocs, Haikuo Fan, Alix Armero, Luc Baudouin, Pengwei Xu, Junyang Xu, Dominique This, Chantal Hamelin, Amjad Iqbal, Rashad Qadri, Lixia Zhou, Jing Li, Yi Wu, Zilong Ma, Auguste Emmanuel Issali, Ronan Rivallan, Na Liu, Wei Xia, Ming Peng, Yong Xiao
Author Information
  1. Yaodong Yang: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. ORCID
  2. Stéphanie Bocs: CIRAD, UMR AGAP, F-34398, Montpellier, France. ORCID
  3. Haikuo Fan: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  4. Alix Armero: AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France.
  5. Luc Baudouin: CIRAD, UMR AGAP, F-34398, Montpellier, France. luc.baudouin@cirad.fr. ORCID
  6. Pengwei Xu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  7. Junyang Xu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  8. Dominique This: AGAP, Univ. Montpellier, CIRAD, INRAE, Institut Agro, F-34398, Montpellier, France. ORCID
  9. Chantal Hamelin: CIRAD, UMR AGAP, F-34398, Montpellier, France.
  10. Amjad Iqbal: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. ORCID
  11. Rashad Qadri: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  12. Lixia Zhou: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  13. Jing Li: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  14. Yi Wu: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China.
  15. Zilong Ma: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China.
  16. Auguste Emmanuel Issali: Station Cocotier Marc Delorme, Centre National De Recherche Agronomique (CNRA)07 B.P. 13, Port Bouet, Côte d'Ivoire.
  17. Ronan Rivallan: CIRAD, UMR AGAP, F-34398, Montpellier, France.
  18. Na Liu: BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, P. R. China.
  19. Wei Xia: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. saizjxiawei@hainu.edu.cn. ORCID
  20. Ming Peng: Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Science, 571101, Haikou, Hainan, P. R. China. pengming@itbb.org.cn. ORCID
  21. Yong Xiao: Hainan Key Laboratory of Tropical Oil Crops Biology/Coconut Research Institute, Chinese Academy of Tropical Agricultural Sciences, 571339, Wenchang, Hainan, P. R. China. xiaoyong1980@catas.cn. ORCID

Abstract

Coconut (Cocos nucifera) is the emblematic palm of tropical coastal areas all around the globe. It provides vital resources to millions of farmers. In an effort to better understand its evolutionary history and to develop genomic tools for its improvement, a sequence draft was recently released. Here, we present a dense linkage map (8402 SNPs) aiming to assemble the large genome of coconut (2.42 Gbp, 2n = 32) into 16 pseudomolecules. As a result, 47% of the sequences (representing 77% of the genes) were assigned to 16 linkage groups and ordered. We observed segregation distortion in chromosome Cn15, which is a signature of strong selection among pollen grains, favouring the maternal allele. Comparing our results with the genome of the oil palm Elaeis guineensis allowed us to identify major events in the evolutionary history of palms. We find that coconut underwent a massive transposable element invasion in the last million years, which could be related to the fluctuations of sea level during the glaciations at Pleistocene that would have triggered a population bottleneck. Finally, to better understand the facultative halophyte trait of coconut, we conducted an RNA-seq experiment on leaves to identify key players of signaling pathways involved in salt stress response. Altogether, our findings represent a valuable resource for the coconut breeding community.

References

  1. Rice (N Y). 2013 Oct 28;6(1):27 pubmed:24280112
  2. Genet Res (Camb). 2011 Oct;93(5):343-9 pubmed:21878144
  3. FEBS Lett. 2001 Sep 14;505(2):233-9 pubmed:11566182
  4. Genesis. 2015 Aug;53(8):474-85 pubmed:26201819
  5. Annu Rev Genet. 1999;33:479-532 pubmed:10690416
  6. Plant Signal Behav. 2011 Apr;6(4):558-62 pubmed:21445013
  7. PLoS One. 2015 Apr 17;10(4):e0125168 pubmed:25886365
  8. Bioinformatics. 2003 Feb 12;19(3):362-7 pubmed:12584121
  9. J Exp Bot. 2014 Mar;65(3):849-58 pubmed:24151301
  10. Plant Mol Biol. 2000 Jan;42(1):251-69 pubmed:10688140
  11. Nature. 2006 Oct 5;443(7111):521-4 pubmed:17024082
  12. G3 (Bethesda). 2017 Jun 7;7(6):1875-1885 pubmed:28413161
  13. New Phytol. 2007;175(3):387-404 pubmed:17635215
  14. PeerJ. 2019 Aug 14;7:e7504 pubmed:31428542
  15. Genome Biol Evol. 2018 Aug 1;10(8):2140-2150 pubmed:30102348
  16. Front Plant Sci. 2014 Apr 22;5:151 pubmed:24795738
  17. Trends Plant Sci. 2015 Sep;20(9):586-94 pubmed:26205171
  18. Nature. 2013 May 30;497(7451):579-84 pubmed:23698360
  19. Plant Signal Behav. 2016;11(4):e1165381 pubmed:27043750
  20. BMC Genomics. 2007 Jul 06;8:218 pubmed:17617907
  21. Theor Appl Genet. 2009 Oct;119(6):1093-103 pubmed:19693484
  22. Genome Biol. 2009;10(3):R25 pubmed:19261174
  23. J Exp Bot. 2014 Mar;65(5):1241-57 pubmed:24368505
  24. Plant Cell. 2000 Jun;12(6):837-51 pubmed:10852932
  25. J Plant Physiol. 2009 Mar 15;166(5):447-66 pubmed:19217185
  26. G3 (Bethesda). 2014 Jan 10;4(1):29-37 pubmed:24192835
  27. Genome Biol Evol. 2019 May 1;11(5):1501-1511 pubmed:31028709
  28. Plant Mol Biol. 2000 Jan;42(1):225-49 pubmed:10688139
  29. Nat Commun. 2014 Oct 28;5:5315 pubmed:25350882
  30. Bioinformatics. 2010 Mar 1;26(5):589-95 pubmed:20080505
  31. PLoS One. 2015 Dec 18;10(12):e0145385 pubmed:26684618
  32. Ann Bot. 2005 Jan;95(1):127-32 pubmed:15596462
  33. Nat Genet. 1998 Sep;20(1):43-5 pubmed:9731528
  34. Genet Mol Res. 2016 Feb 11;15(1): pubmed:26909966
  35. Nat Commun. 2013;4:2274 pubmed:23917264
  36. PLoS One. 2011 May 04;6(5):e19379 pubmed:21573248
  37. Plant Sci. 2016 Nov;252:324-334 pubmed:27717469
  38. Proc Natl Acad Sci U S A. 2005 Dec 27;102(52):19243-8 pubmed:16357197
  39. Bioinformatics. 2010 Oct 15;26(20):2509-16 pubmed:20736338
  40. Chromosoma. 2016 Jun;125(2):301-8 pubmed:26801812
  41. Nat Commun. 2018 Jul 6;9(1):2638 pubmed:29980662
  42. Plant Cell. 2014 Jul;26(7):2792-802 pubmed:25082857
  43. G3 (Bethesda). 2019 Aug 8;9(8):2377-2393 pubmed:31167834
  44. PLoS One. 2013;8(3):e59997 pubmed:23555859
  45. PLoS One. 2013 Jul 29;8(7):e71118 pubmed:23923055
  46. Mol Ecol. 2013 Mar;22(6):1503-17 pubmed:23293987
  47. BMC Genomics. 2016 Mar 16;17:243 pubmed:26984673
  48. PLoS One. 2014 Feb 28;9(2):e90346 pubmed:24587335
  49. Curr Opin Genet Dev. 1995 Dec;5(6):814-21 pubmed:8745082
  50. Bioinformatics. 2015 Oct 1;31(19):3210-2 pubmed:26059717
  51. G3 (Bethesda). 2014 Sep 04;4(11):2147-57 pubmed:25193496
  52. J Neurosci. 2010 Jun 2;30(22):7554-62 pubmed:20519529
  53. Mol Ecol Resour. 2017 May;17(3):565-580 pubmed:27487989
  54. PLoS One. 2011;6(6):e21143 pubmed:21731660
  55. Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6603-7 pubmed:10823912
  56. PLoS Genet. 2009 Nov;5(11):e1000732 pubmed:19936065
  57. Cladistics. 2015 Oct;31(5):509-534 pubmed:34772273
  58. Genome Res. 2009 May;19(5):943-57 pubmed:19218533
  59. Front Plant Sci. 2016 May 04;7:571 pubmed:27200044
  60. Genome Res. 2004 May;14(5):860-9 pubmed:15078861
  61. Genome Res. 2009 Sep;19(9):1639-45 pubmed:19541911
  62. Nat Genet. 2017 Apr;49(4):490-496 pubmed:28288112
  63. Annu Rev Plant Biol. 2008;59:651-81 pubmed:18444910
  64. Genome Biol. 2004;5(10):R79 pubmed:15461797
  65. BMC Bioinformatics. 2011 Aug 04;12:323 pubmed:21816040
  66. Front Plant Sci. 2015 Nov 27;6:1059 pubmed:26640476
  67. Bioinformatics. 2013 Jun 15;29(12):1492-7 pubmed:23698863
  68. Genet Mol Biol. 2017;40(1 suppl 1):326-345 pubmed:28350038
  69. Comput Appl Biosci. 1997 Oct;13(5):555-6 pubmed:9367129
  70. J Exp Bot. 2014 Jul;65(12):2963-79 pubmed:24755280
  71. Nucleic Acids Res. 2013 Jan;41(Database issue):D1172-5 pubmed:23161680
  72. Ann Bot. 2014 Mar;113(4):565-70 pubmed:24368197
  73. Nat Genet. 2013 May;45(5):487-94 pubmed:23525075
  74. BMC Bioinformatics. 2004 Aug 19;5:113 pubmed:15318951
  75. Plant Cell Rep. 2013 Jul;32(7):959-70 pubmed:23535869
  76. Protein Cell. 2013 Jul;4(7):493-501 pubmed:23794032
  77. Genetics. 2005 Feb;169(2):1033-43 pubmed:15731520
  78. Plant Cell. 1999 Sep;11(9):1769-1784 pubmed:10488242
  79. Theor Appl Genet. 2019 Jun;132(6):1733-1744 pubmed:30783744
  80. Nature. 2013 Aug 15;500(7462):335-9 pubmed:23883927
  81. Nature. 2015 Nov 26;527(7579):508-11 pubmed:26560029
  82. Gigascience. 2017 Nov 1;6(11):1-11 pubmed:29048487
  83. Nucleic Acids Res. 2016 Jan 4;44(D1):D733-45 pubmed:26553804
  84. BMC Plant Biol. 2010 Jul 16;10:149 pubmed:20637079
  85. Trends Plant Sci. 2013 May;18(5):259-66 pubmed:23265948
  86. Front Plant Sci. 2015 Dec 01;6:1077 pubmed:26648959
  87. Proc Natl Acad Sci U S A. 1996 Sep 17;93(19):10274-9 pubmed:8816790
  88. Am J Bot. 2015 Oct;102(10):1625-33 pubmed:26437888

MeSH Term

Biological Evolution
Chromosome Mapping
Chromosomes, Plant
Cocos
DNA Transposable Elements
Genome, Plant
Genotyping Techniques
Reference Standards
Salt Tolerance
Signal Transduction

Chemicals

DNA Transposable Elements