Integrated Analysis of the Transcriptome and Metabolome Revealed the Molecular Mechanisms Underlying the Enhanced Salt Tolerance of Rice Due to the Application of Exogenous Melatonin.

Ziyan Xie, Juan Wang, Wensheng Wang, Yanru Wang, Jianlong Xu, Zhikang Li, Xiuqin Zhao, Binying Fu
Author Information
  1. Ziyan Xie: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  2. Juan Wang: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  3. Wensheng Wang: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  4. Yanru Wang: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  5. Jianlong Xu: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  6. Zhikang Li: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  7. Xiuqin Zhao: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.
  8. Binying Fu: Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing, China.

Abstract

High salinity is one of the major abiotic stresses limiting rice production. Melatonin has been implicated in the salt tolerance of rice. However, the molecular basis of melatonin-mediated salt tolerance in rice remains unclear. In the present study, we performed an integrated transcriptome and metabolome profiling of rice seedlings treated with salt, melatonin, or salt + melatonin. The application of exogenous melatonin increased the salt tolerance of rice plants by decreasing the sodium content to maintain Na/K homeostasis, alleviating membrane lipid oxidation, and enhancing chlorophyll contention. A comparative transcriptome analysis revealed that complex molecular pathways contribute to melatonin-mediated salt tolerance. More specifically, the AP2/EREBP-HB-WRKY transcriptional cascade and phytohormone (e.g., auxin and abscisic acid) signaling pathways were activated by an exogenous melatonin treatment. On the basis of metabolome profiles, 64 metabolites, such as amino acids, organic acids, nucleotides, and secondary metabolites, were identified with increased abundances only in plants treated with salt + melatonin. Several of these metabolites including endogenous melatonin and its intermediates (5-hydroxy-L-tryptophan, -acetyl- -formyl-5-methoxykynuramine), gallic acid, diosmetin, and cyanidin 3--galactoside had antioxidant functions, suggesting melatonin activates multiple antioxidant pathways to alleviate the detrimental effects of salt stress. Combined transcriptome and metabolome analyses revealed a few gene-metabolite networks related to various pathways, including linoleic acid metabolism and amino acid metabolism that are important for melatonin-mediated salt tolerance. The data presented herein may be useful for further elucidating the multiple regulatory roles of melatonin in plant responses to abiotic stresses.

Keywords

References

  1. Curr Opin Struct Biol. 1998 Dec;8(6):679-85 [PMID: 9914247]
  2. Protoplasma. 2010 Sep;245(1-4):3-14 [PMID: 20411284]
  3. J Pineal Res. 1995 Jan;18(1):28-31 [PMID: 7776176]
  4. BMC Plant Biol. 2016 Apr 14;16:86 [PMID: 27079791]
  5. Front Plant Sci. 2016 Aug 15;7:1231 [PMID: 27574526]
  6. PLoS One. 2014 Mar 28;9(3):e93462 [PMID: 24682084]
  7. Theor Appl Genet. 2019 Apr;132(4):851-870 [PMID: 30759266]
  8. J Pineal Res. 2002 May;32(4):257-61 [PMID: 11982796]
  9. Biomed Pharmacother. 2018 Dec;108:625-633 [PMID: 30245462]
  10. J Exp Bot. 2015 Feb;66(3):647-56 [PMID: 25124318]
  11. J Pineal Res. 2020 May;68(4):e12642 [PMID: 32092171]
  12. J Exp Bot. 2015 Feb;66(3):681-94 [PMID: 25225478]
  13. Front Plant Sci. 2013 Jul 02;4:231 [PMID: 23847636]
  14. Proc Natl Acad Sci U S A. 1996 Jul 23;93(15):8117-22 [PMID: 8755613]
  15. Plant Physiol. 2016 Sep;172(1):575-88 [PMID: 27382137]
  16. Int J Mol Sci. 2019 Apr 26;20(9): [PMID: 31027387]
  17. Biomed Res Int. 2014;2014:946075 [PMID: 24877149]
  18. Biochem Mol Biol Int. 1995 Mar;35(3):627-34 [PMID: 7773197]
  19. Plant Physiol. 2017 May;174(1):312-325 [PMID: 28351912]
  20. J Integr Plant Biol. 2021 Jan;63(1):126-145 [PMID: 32678945]
  21. J Agric Food Chem. 2018 Mar 21;66(11):2909-2916 [PMID: 29482326]
  22. Plant Physiol Biochem. 2019 Dec;145:164-173 [PMID: 31698329]
  23. Hortic Res. 2020 Jun 1;7:79 [PMID: 32528691]
  24. Nucleic Acids Res. 2011 Jul;39(Web Server issue):W316-22 [PMID: 21715386]
  25. FASEB J. 2001 Oct;15(12):2294-6 [PMID: 11511530]
  26. Molecules. 2019 Mar 15;24(6): [PMID: 30875930]
  27. Plant Cell Environ. 2020 Nov;43(11):2591-2605 [PMID: 32196121]
  28. Genes Genomics. 2019 Feb;41(2):175-182 [PMID: 30298358]
  29. Ecotoxicol Environ Saf. 2005 Mar;60(3):324-49 [PMID: 15590011]
  30. Environ Toxicol. 2019 Jul;34(7):781-787 [PMID: 30884105]
  31. Plants (Basel). 2019 Jan 24;8(2): [PMID: 30682815]
  32. J Pineal Res. 2013 Apr;54(3):292-302 [PMID: 23106234]
  33. Front Plant Sci. 2016 May 18;7:676 [PMID: 27242875]
  34. Planta. 2009 Feb;229(3):577-91 [PMID: 19034497]
  35. Sci China C Life Sci. 2008 Jul;51(7):583-91 [PMID: 18622741]
  36. Plant J. 2007 Jun;50(6):967-81 [PMID: 17461790]
  37. J Pineal Res. 2015 Aug;59(1):91-101 [PMID: 25912474]
  38. Ukr Biochem J. 2017 Jan-Feb;89(1):5-21 [PMID: 29236385]
  39. Trends Plant Sci. 2014 Dec;19(12):789-97 [PMID: 25156541]
  40. Front Plant Sci. 2017 Feb 07;8:134 [PMID: 28223997]
  41. Front Plant Sci. 2017 Apr 21;8:628 [PMID: 28484484]
  42. Trends Plant Sci. 2000 May;5(5):199-206 [PMID: 10785665]
  43. Plant Signal Behav. 2011 Apr;6(4):570-4 [PMID: 21447996]
  44. Plant Physiol Biochem. 2016 Mar;100:150-155 [PMID: 26828406]
  45. J Pineal Res. 2019 May;66(4):e12567 [PMID: 30803008]
  46. Amino Acids. 2010 Oct;39(4):1023-8 [PMID: 20364431]
  47. J Exp Bot. 2016 Jan;67(1):405-19 [PMID: 26512058]
  48. Genes (Basel). 2019 Sep 30;10(10): [PMID: 31575043]
  49. Front Plant Sci. 2018 Aug 03;9:1131 [PMID: 30123232]
  50. Plant Physiol Biochem. 2016 Mar;100:94-104 [PMID: 26807934]
  51. J Pineal Res. 2015 Oct;59(3):334-42 [PMID: 26182834]
  52. Plants (Basel). 2020 Mar 25;9(4): [PMID: 32218185]
  53. Plant J. 2002 Nov;32(4):495-508 [PMID: 12445121]
  54. Planta. 2007 Dec;227(1):1-12 [PMID: 17624547]
  55. J Pineal Res. 2018 Jan;64(1): [PMID: 29151275]
  56. Mol Plant. 2016 Nov 7;9(11):1520-1534 [PMID: 27677460]
  57. Ann Bot. 2018 Feb 12;121(2):195-207 [PMID: 29069281]
  58. Molecules. 2018 Jul 28;23(8): [PMID: 30060559]
  59. J Pestic Sci. 2018 Aug 20;43(3):191-197 [PMID: 30363135]
  60. Ann Bot. 2015 Feb;115(3):433-47 [PMID: 25564467]
  61. Ecotoxicol Environ Saf. 2020 Sep 1;200:110720 [PMID: 32470680]
  62. Genomics. 2006 Sep;88(3):360-71 [PMID: 16707243]
  63. Plant Physiol. 2018 Sep;178(1):451-467 [PMID: 30068540]
  64. Biol Pharm Bull. 2007 Jun;30(6):1052-5 [PMID: 17541153]
  65. Gene. 2007 Jun 1;394(1-2):13-24 [PMID: 17408882]
  66. Life Sci. 2003 May 23;73(1):19-26 [PMID: 12726883]
  67. Photosynth Res. 2005;83(2):191-217 [PMID: 16143852]
  68. PLoS One. 2012;7(10):e48242 [PMID: 23118960]
  69. J Exp Bot. 2018 Feb 23;69(5):963-974 [PMID: 29281056]
  70. Biochem Biophys Res Commun. 2016 Sep 16;478(2):703-9 [PMID: 27524243]
  71. J Pineal Res. 2015 Sep;59(2):133-50 [PMID: 26094813]
  72. J Pineal Res. 2005 Nov;39(4):333-41 [PMID: 16207287]
  73. Food Chem Toxicol. 2018 Mar;113:218-227 [PMID: 29317330]
  74. Endocr Rev. 1991 May;12(2):151-80 [PMID: 1649044]
  75. Nucleic Acids Res. 2017 Jul 3;45(W1):W122-W129 [PMID: 28472432]
  76. Phytochemistry. 2006 Jul;67(14):1442-54 [PMID: 16808934]