Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity.

Héloïse Flament, Matthieu Rouland, Lucie Beaudoin, Amine Toubal, Léo Bertrand, Samuel Lebourgeois, Camille Rousseau, Pauline Soulard, Zouriatou Gouda, Lucie Cagninacci, Antoine C Monteiro, Margarita Hurtado-Nedelec, Sandrine Luce, Karine Bailly, Muriel Andrieu, Benjamin Saintpierre, Franck Letourneur, Youenn Jouan, Mustapha Si-Tahar, Thomas Baranek, Christophe Paget, Christian Boitard, Anaïs Vallet-Pichard, Jean-François Gautier, Nadine Ajzenberg, Benjamin Terrier, Frédéric Pène, Jade Ghosn, Xavier Lescure, Yazdan Yazdanpanah, Benoit Visseaux, Diane Descamps, Jean-François Timsit, Renato C Monteiro, Agnès Lehuen
Author Information
  1. Héloïse Flament: Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France.
  2. Matthieu Rouland: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France. ORCID
  3. Lucie Beaudoin: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  4. Amine Toubal: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France. ORCID
  5. Léo Bertrand: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France. ORCID
  6. Samuel Lebourgeois: Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.
  7. Camille Rousseau: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  8. Pauline Soulard: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  9. Zouriatou Gouda: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  10. Lucie Cagninacci: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  11. Antoine C Monteiro: Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.
  12. Margarita Hurtado-Nedelec: Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France. ORCID
  13. Sandrine Luce: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France. ORCID
  14. Karine Bailly: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  15. Muriel Andrieu: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  16. Benjamin Saintpierre: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  17. Franck Letourneur: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  18. Youenn Jouan: Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France.
  19. Mustapha Si-Tahar: Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France.
  20. Thomas Baranek: Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France.
  21. Christophe Paget: Université de Tours, Inserm, Centre d'Etude des Pathologies Respiratoires UMR 1100, Tours, France.
  22. Christian Boitard: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  23. Anaïs Vallet-Pichard: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  24. Jean-François Gautier: Department of Diabetes and Endocrinology, AP-HP, Lariboisière Hospital, Paris, France.
  25. Nadine Ajzenberg: Department of Hematology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.
  26. Benjamin Terrier: Department of Internal Medicine, AP-HP, Cochin University Hospital, Paris, France.
  27. Frédéric Pène: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France.
  28. Jade Ghosn: Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.
  29. Xavier Lescure: Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.
  30. Yazdan Yazdanpanah: Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.
  31. Benoit Visseaux: Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.
  32. Diane Descamps: Department of Virology, AP-HP, Bichat-Claude Bernard University Hospital, Paris, France.
  33. Jean-François Timsit: Université de Paris, Infections Antimicrobials Modelling Evolution UMR 1137, Paris, France.
  34. Renato C Monteiro: Laboratory of Immunological Dysfunction, Assistance Publique-Hôpitaux de Paris (AP-HP), Bichat-Claude Bernard University Hospital, Paris, France. ORCID
  35. Agnès Lehuen: Université de Paris, Institut Cochin, Inserm U1016, Centre National de la Recherche Scientifique UMR 8104, Inflamex Laboratory, Paris, France. agnes.lehuen@inserm.fr. ORCID

Abstract

Immune system dysfunction is paramount in coronavirus disease 2019 (COVID-19) severity and fatality rate. Mucosal-associated invariant T (MAIT) cells are innate-like T cells involved in mucosal immunity and protection against viral infections. Here, we studied the immune cell landscape, with emphasis on MAIT cells, in cohorts totaling 208 patients with various stages of disease. MAIT cell frequency is strongly reduced in blood. They display a strong activated and cytotoxic phenotype that is more pronounced in lungs. Blood MAIT cell alterations positively correlate with the activation of other innate cells, proinflammatory cytokines, notably interleukin (IL)-18, and with the severity and mortality of severe acute respiratory syndrome coronavirus 2 infection. We also identified a monocyte/macrophage interferon (IFN)-α-IL-18 cytokine shift and the ability of infected macrophages to induce the cytotoxicity of MAIT cells in an MR1-dependent manner. Together, our results suggest that altered MAIT cell functions due to IFN-α-IL-18 imbalance contribute to disease severity, and their therapeutic manipulation may prevent deleterious inflammation in COVID-19 aggravation.

References

  1. Wrapp, D. et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 367, 1260–1263 (2020). [PMID: 32075877]
  2. Tay, M. Z., Poh, C. M., Rénia, L., MacAry, P. A. & Ng, L. F. P. The trinity of COVID-19: immunity, inflammation and intervention. Nat. Rev. Immunol. https://doi.org/10.1038/s41577-020-0311-8 (2020).
  3. Chen, N. et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet 395, 507–513 (2020). [PMID: 32007143]
  4. Huang, C. et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506 (2020). [PMID: 31986264]
  5. Thompson, B. T., Chambers, R. C. & Liu, K. D. Acute respiratory distress syndrome. N. Engl. J. Med. 377, 562–572 (2017). [PMID: 28792873]
  6. Matthay, M. A. et al. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers 5, 18 (2019). [PMID: 30872586]
  7. Gorbalenya, A. E. et al. The species severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat. Microbiol. 5, 536–544 (2020). [DOI: 10.1038/s41564-020-0695-z]
  8. McCarthy, N. E. & Eberl, M. Human γδ T cell control of mucosal immunity and inflammation. Front. Immunol. 9, 985 (2018).
  9. Toubal, A., Nel, I., Lotersztajn, S. & Lehuen, A. Mucosal-associated invariant T cells and disease. Nat. Rev. Immunol. 19, 643–657 (2019). [PMID: 31308521]
  10. Trottein, F. & Paget, C. Natural killer T cells and mucosal-associated invariant T cells in lung infections. Front Immunol. 9, 1750 (2018).
  11. Constantinides, M. G. et al. MAIT cells are imprinted by the microbiota in early life and promote tissue repair. Science 366, eaax6624 (2019). [PMID: 31649166]
  12. Leng, T. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions. Cell Rep. 28, 3077–3091 (2019). [PMID: 31533032]
  13. Stehle, C., Hernández, D. C. & Romagnani, C. Innate lymphoid cells in lung infection and immunity. Immunol. Rev. 286, 102–119 (2018). [PMID: 30294964]
  14. Treiner, E. et al. Selection of evolutionarily conserved mucosal-associated invariant T cells by MR1. Nature 422, 164–169 (2003). [PMID: 12634786]
  15. Corbett, A. J. et al. T cell activation by transitory neo-antigens derived from distinct microbial pathways. Nature 509, 361–365 (2014). [PMID: 24695216]
  16. Loh, L. et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation. Proc. Natl Acad. Sci. USA 113, 10133–10138 (2016). [PMID: 27543331]
  17. Ussher, J. E., Willberg, C. B. & Klenerman, P. MAIT cells and viruses. Immunol. Cell Biol. 96, 630–641 (2018). [PMID: 29350807]
  18. van Wilgenburg, B. et al. MAIT cells are activated during human viral infections. Nat. Commun. 7, 11653 (2016). [PMID: 27337592]
  19. Ussher, J. E. et al. CD161CD8 T cells, including the MAIT cell subset, are specifically activated by IL-12 + IL-18 in a TCR-independent manner. Eur. J. Immunol. 44, 195–203 (2014). [PMID: 24019201]
  20. Leeansyah, E. et al. Activation, exhaustion and persistent decline of the antimicrobial MR1-restricted MAIT cell population in chronic HIV-1 infection. Blood 121, 1124–1135 (2013). [PMID: 23243281]
  21. Leeansyah, E. et al. Arming of MAIT cell cytolytic antimicrobial activity is induced by IL-7 and defective in HIV-1 infection. PLoS Pathog. 11, e1005072 (2015). [PMID: 26295709]
  22. Wang, F. et al. Characteristics of peripheral lymphocyte subset alteration in COVID-19 pneumonia. J. Infect. Dis. 221, 1762–1769 (2020). [PMID: 32227123]
  23. Silvin, A. et al. Elevated calprotectin and abnormal myeloid cell subsets discriminate severe from mild COVID-19. Cell https://doi.org/10.1016/j.cell.2020.08.002 (2020).
  24. Schulte-Schrepping, J. et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell https://doi.org/10.1016/j.cell.2020.08.001 (2020).
  25. Jouan, Y. et al. Phenotypical and functional alteration of unconventional T cells in severe COVID-19 patients. J. Exp. Med. 217, e20200872 (2020). [PMID: 32886755]
  26. Parrot, T. et al. MAIT cell activation and dynamics associated with COVID-19 disease severity. Sci. Immunol. 5, eabe1670 (2020). [PMID: 32989174]
  27. Hadjadj, J. et al. Impaired type I interferon activity and inflammatory responses in severe COVID-19 patients. Science https://doi.org/10.1126/science.abc6027 (2020).
  28. Zhang, J.-Y. et al. Single-cell landscape of immunological responses in patients with COVID-19. Nat. Immunol. https://doi.org/10.1038/s41590-020-0762-x (2020).
  29. Merad, M. & Martin, J. C. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat. Rev. Immunol. 20, 355–362 (2020). [PMID: 32376901]
  30. Zhou, Y. et al. Pathogenic T cells and inflammatory monocytes incite inflammatory storms in severe COVID-19 patients. Natl Sci. Rev. 7, 998–1002 (2020). [PMID: 34676125]
  31. Huang, I.-C. et al. Distinct patterns of IFITM-mediated restriction of filoviruses, SARS coronavirus and influenza A virus. PLoS Pathog. 7, e1001258 (2011). [PMID: 21253575]
  32. Kragten, N. A. M. et al. Blimp-1 induces and Hobit maintains the cytotoxic mediator granzyme B in CD8 T cells. Eur. J. Immunol. 48, 1644–1662 (2018). [PMID: 30051906]
  33. Kurioka, A. et al. MAIT cells are licensed through granzyme exchange to kill bacterially sensitized targets. Mucosal Immunol. 8, 429–440 (2015). [PMID: 25269706]
  34. Chua, R. L. et al. COVID-19 severity correlates with airway epithelium–immune cell interactions identified by single-cell analysis. Nat. Biotechnol. 38, 970–979 (2020). [PMID: 32591762]
  35. Hegde, P. et al. Mucosal-associated invariant T cells are a profibrogenic immune cell population in the liver. Nat. Commun. 9, 2146 (2018). [PMID: 29858567]
  36. Rouxel, O. et al. Cytotoxic and regulatory roles of mucosal-associated invariant T cells in type 1 diabetes. Nat. Immunol. 18, 1321–1331 (2017). [PMID: 28991267]
  37. Magalhaes, I. et al. Mucosal-associated invariant T cell alterations in obese and type 2 diabetic patients. J. Clin. Invest. 125, 1752–1762 (2015). [PMID: 25751065]
  38. Toubal, A. et al. Mucosal-associated invariant T cells promote inflammation and intestinal dysbiosis leading to metabolic dysfunction during obesity. Nat. Commun. 11, 3755 (2020). [PMID: 32709874]
  39. Zhou, F. et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 395, 1054–1062 (2020). [PMID: 32171076]
  40. Cariou, B. et al. Phenotypic characteristics and prognosis of inpatients with COVID-19 and diabetes: the CORONADO study. Diabetologia 63, 1500–1515 (2020). [PMID: 32472191]
  41. Lisco, G. et al. Hypothesized mechanisms explaining poor prognosis in type 2 diabetes patients with COVID-19: a review. Endocrine https://doi.org/10.1007/s12020-020-02444-9 (2020).
  42. Czernichow, S. et al. Obesity doubles mortality in patients hospitalized for SARS-CoV-2 in Paris hospitals, France: a cohort study on 5,795 patients. Obesity https://doi.org/10.1002/oby.23014 (2020).
  43. Grimaldi, D. et al. Specific MAIT cell behaviour among innate-like T lymphocytes in critically ill patients with severe infections. Intensive Care Med. 40, 192–201 (2014). [PMID: 24322275]
  44. Lei, X. et al. Activation and evasion of type I interferon responses by SARS-CoV-2. Nat. Commun. 11, 3810 (2020). [PMID: 32733001]
  45. Riegert, P., Wanner, V. & Bahram, S. Genomics, isoforms, expression and phylogeny of the MHC class I-related MR1 gene. J. Immunol. 161, 4066–4077 (1998). [PMID: 9780177]
  46. Fan, J. et al. The lung tissue microbiota features of 20 deceased patients with COVID-19. J. Infect. 81, e64–e67 (2020). [PMID: 32579991]
  47. Arunachalam, P. S. et al. Systems biological assessment of immunity to mild versus severe COVID-19 infection in humans. Science 369, 1210–1220 (2020). [PMID: 32788292]
  48. Blackley, S. et al. Primary human splenic macrophages, but not T or B cells, are the principal target cells for dengue virus infection in vitro. J. Virol. 81, 13325–13334 (2007). [PMID: 17928355]
  49. Hasnain, S. E. et al. Host–pathogen interactions during apoptosis. J. Biosci. 28, 349–358 (2003). [PMID: 12734412]
  50. Gordon, D. E. et al. A SARS-CoV-2 protein interaction map reveals targets for drug repurposing. Nature 583, 459–468 (2020). [PMID: 32353859]
  51. Symons, J. A., Alcamí, A. & Smith, G. L. Vaccinia virus encodes a soluble type I interferon receptor of novel structure and broad species specificity. Cell 81, 551–560 (1995). [PMID: 7758109]
  52. Désiré, N. et al. Quantification of human immunodeficiency virus type 1 proviral load by a TaqMan real-time PCR assay. J. Clin. Microbiol. 39, 1303–1310 (2001). [PMID: 11283046]
  53. Perrin, S., Firmo, C., Lemoine, S., Le Crom, S. & Jourdren, L. Aozan: an automated post-sequencing data-processing pipeline. Bioinformatics 33, 2212–2213 (2017). [PMID: 28369225]
  54. Nowicka, M. et al. CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. F1000Res 6, 748 (2017). [PMID: 28663787]

Grants

  1. ANR-11-IDEX-0005-02/Agence Nationale de la Recherche (French National Research Agency)
  2. ANR-17-CE14-0002-01/Agence Nationale de la Recherche (French National Research Agency)
  3. ANR-19-CE14-0020/Agence Nationale de la Recherche (French National Research Agency)
  4. ANR-17-RHUS-009/Agence Nationale de la Recherche (French National Research Agency)
  5. EQU201903007779/Fondation pour la Recherche Médicale (Foundation for Medical Research in France)
  6. EQU201903007816/Fondation pour la Recherche Médicale (Foundation for Medical Research in France)

MeSH Term

Adult
Aged
Aged, 80 and over
Animals
Bronchoalveolar Lavage
COVID-19
Case-Control Studies
Chlorocebus aethiops
Cohort Studies
Female
France
Humans
Immunophenotyping
Interferon-alpha
Interleukin-10
Interleukin-15
Interleukin-18
Interleukin-1beta
Interleukin-6
Interleukin-8
Macrophages
Male
Middle Aged
Monocytes
Mucosal-Associated Invariant T Cells
RNA-Seq
SARS-CoV-2
Severity of Illness Index
Single-Cell Analysis
Vero Cells
Young Adult

Chemicals

Interferon-alpha
Interleukin-15
Interleukin-18
Interleukin-1beta
Interleukin-6
Interleukin-8
Interleukin-10