Upon encountering an antigen, antibodies mature through various rounds of somatic mutations, resulting in higher affinities and specificities to the particular antigen. We review recent progress in four areas of antibody maturation studies. (1) Next-generation and single-cell sequencing have revolutionized the analysis of antibody repertoires by dramatically increasing the sequences available to study the state and evolution of the immune system. Computational methods, including machine learning tools, have been developed for reconstituting antibody clonal lineages and for general repertoire analysis. (2) The availability of X-ray structures, thermodynamic and kinetic data, and molecular dynamics simulations provide information on the biophysical mechanisms responsible for improved affinity. (3) In addition to improved binding to a specific antigen, providing affinity-independent diversity and self/nonself discrimination are fundamental functions of the immune system. Recent studies, including X-ray structures, yield improved understanding of both mechanisms. (4) Results from in vivo maturation help to develop methods of in vitro maturation to improve antibody properties for therapeutic applications, frequently combining computational and experimental approaches.
Exp Ther Med. 2019 Mar;17(3):2206-2220
[PMID:
30867706]
Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):264-9
[PMID:
23175789]
Front Immunol. 2018 Feb 01;9:117
[PMID:
29449843]
Science. 2018 Apr 13;360(6385):223-226
[PMID:
29650674]
Immunol Rev. 2017 Jan;275(1):129-144
[PMID:
28133793]
Proc Natl Acad Sci U S A. 2019 Jan 22;116(4):1261-1266
[PMID:
30622180]
Antiviral Res. 2020 Aug;180:104757
[PMID:
32171857]
PLoS Comput Biol. 2019 May 1;15(5):e1006980
[PMID:
31042706]
J Biol Chem. 2020 Jul 17;295(29):9823-9837
[PMID:
32409582]
J Immunol. 2018 Oct 15;201(8):2502-2509
[PMID:
30217829]
MAbs. 2018 Jan;10(1):104-117
[PMID:
28952876]
Sci Rep. 2019 Dec 27;9(1):19840
[PMID:
31882602]
Proc Natl Acad Sci U S A. 2019 Dec 16;:
[PMID:
31843892]
JCI Insight. 2019 May 16;4(10):
[PMID:
31092727]
Immunol Lett. 2019 Aug;212:106-113
[PMID:
31247224]
Nature. 2019 Oct;574(7776):122-126
[PMID:
31554970]
Protein Eng Des Sel. 2017 Sep 1;30(9):611-617
[PMID:
28472478]
Sci Rep. 2018 Feb 2;8(1):2260
[PMID:
29396522]
Appl Microbiol Biotechnol. 2019 Sep;103(18):7703-7717
[PMID:
31359103]
MAbs. 2020 Jan-Dec;12(1):1803646
[PMID:
32744131]
Sci Rep. 2017 Mar 28;7:45259
[PMID:
28349921]
Biochem Eng J. 2018 Sep 15;137:365-374
[PMID:
30666176]
J Chem Inf Model. 2020 Apr 27;60(4):1911-1916
[PMID:
32207937]
Proteins. 2017 Jul;85(7):1311-1318
[PMID:
28342222]
Nat Protoc. 2015 May;10(5):733-55
[PMID:
25855957]
Methods Mol Biol. 2018;1827:15-34
[PMID:
30196490]
Brief Bioinform. 2020 Sep 25;21(5):1549-1567
[PMID:
31626279]
Front Mol Biosci. 2020 Aug 07;7:182
[PMID:
32850970]
Proc Natl Acad Sci U S A. 2019 Mar 5;116(10):4025-4030
[PMID:
30765520]
Cell Rep. 2019 Sep 24;28(13):3300-3308.e4
[PMID:
31553901]
Front Immunol. 2018 Mar 02;9:413
[PMID:
29545810]
Front Immunol. 2019 Jan 07;9:3065
[PMID:
30666252]
PLoS One. 2017 Jul 27;12(7):e0181490
[PMID:
28750054]
Bioinformatics. 2017 Dec 15;33(24):3938-3946
[PMID:
28968873]
Comput Struct Biotechnol J. 2020 Jul 17;18:2000-2011
[PMID:
32802272]