scRNA-seq of ovarian follicle granulosa cells from different fertility goats reveals distinct expression patterns.

Zengkuan Li, Junjie Wang, Yong Zhao, Dongxue Ma, Minghui Zhao, Na Li, Yuhao Men, Yuan Zhang, Huimin Chu, Chuzhao Lei, Wei Shen, Othman El-Mahdy Othman, Lingjiang Min
Author Information
  1. Zengkuan Li: College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.
  2. Junjie Wang: College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
  3. Yong Zhao: College of Life Sciences, Qingdao Agricultural University, Qingdao, China. ORCID
  4. Dongxue Ma: College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.
  5. Minghui Zhao: College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
  6. Na Li: College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
  7. Yuhao Men: College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.
  8. Yuan Zhang: Jining Animal Husbandry Development Center, Jining, China.
  9. Huimin Chu: Jining Agricultural Science Institute, Jining, China.
  10. Chuzhao Lei: Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, China.
  11. Wei Shen: College of Life Sciences, Qingdao Agricultural University, Qingdao, China.
  12. Othman El-Mahdy Othman: Cell Biology Department, National Research Centre, Giza, Egypt.
  13. Lingjiang Min: College of Animal Sciences and Technology, Qingdao Agricultural University, Qingdao, China.

Abstract

The new technology of high-throughput single-cell RNA sequencing (10 × scRNA-seq) was developed recently with many advantages. However, it was not commonly used in farm animal research. There are few reports for the gene expression of goat ovarian follicle granulosa cells (GCs) during different developmental stages. In the current investigation, the gene expression of follicle GCs at different stages from two populations of Ji'ning grey goats: high litter size (HL; ≥3/L; 2 L) and low litter size (LL; ≤2 /L; 2 L) were analysed by scRNA-seq. Many GC marker genes were identified, and the pseudo-time showed that GCs developed during the time course which reflected the follicular development and differentiation trajectory. Moreover, the gene expression difference between the two populations HL versus LL was very clear at different developmental stages. Many marker genes differentially expressed at different developmental stages. ASIP and ASPN were found to be highly expressed in the early stage of GCs, INHA, INHBA, MFGE8 and HSD17B1 were identified to be highly expressed in the growing stage of GCs, while IGFBP2, IGFBP5 and CYP11A1 were found to be highly expressed in late stage. These marker genes could be used as reference genes of goat follicle GC development. This investigation for the first time discovered the gene expression patterns in goat follicle GCs in high- or low-fertility populations (based on litter size) by scRNA-seq which may be useful for uncovering the oocyte development potential.

Keywords

References

  1. Besnard, N., Pisselet, C., Monniaux, D., Locatelli, A., Benne, F., Gasser, F., Hatey, F., & Monget, P. (1996). Expression of messenger ribonucleic acids of insulin-like growth factor binding proteins-2,-4, and-5 in the ovine ovary: Localization and changes during growth and atresia of antral follicles. Biology of Reproduction, 55(6), 1356-1367.
  2. Chronowska, E. (2014). High-throughput analysis of ovarian granulosa cell transcriptome. BioMed Research International, 2014, 213570. https://doi.org/10.1155/2014/213570.
  3. D'Aurora, M., Sperduti, S., Di Emidio, G., Stuppia, L., Artini, P. G., & Gatta, V. (2016). Inside the granulosa transcriptome. Gynecological Endocrinology, 32(12), 951-956. https://doi.org/10.1080/09513590.2016.1223288.
  4. Dewailly, D., & Laven, J. (2019). DEBATE: AMH as the primary marker for fertility. European Journal of Endocrinology, 6(181), D45-D51. https://doi.org/10.1530/EJE-19-0373.
  5. Durlinger, A. L., Kramer, P., Karels, B., de Jong, F. H., Uilenbroek, J. T. J., Grootegoed, J. A., & Themmen, A. P. (1999). Control of primordial follicle recruitment by anti-Mullerian hormone in the mouse ovary. Endocrinology, 140(12), 5789-5796.
  6. Ernst, C., Eling, N., Martinez-Jimenez, C. P., Marioni, J. C., & Odom, D. T. (2019). Staged developmental mapping and X chromosome transcriptional dynamics during mouse spermatogenesis. Nature Communications, 10(1), 1251. 10.1038/s41467-019-09182-1.
  7. Fan, X., Bialecka, M., Moustakas, I., Lam, E., Torrens-Juaneda, V., Borggreven, N., Trouw, L., Louwe, L., Pilgram, G., & Mei, H. (2019). Single-cell reconstruction of follicular remodeling in the human adult ovary. Nature Communications, 10(1), 1-13.10.1038/s41467-019-11036-9.
  8. Frye, C. (2009). Steroids, reproductive endocrine function, and affect. A Review. Minerva Ginecologica, 61(6), 541-562.
  9. Gazi, U., & Martinez-Pomares, L. (2009). Influence of the mannose receptor in host immune responses. Immunobiology, 214, 554-561. https://doi.org/10.1016/j.imbio.2008.11.004.
  10. Grimes, R. W., & Hammond, J. M. (1992). Insulin and insulin-like growth factors (IGFs) stimulate production of IGF-binding proteins by ovarian granulosa cells. Endocrinology, 131(2), 553-558.
  11. Grimes, R. W., Samaras, S. E., Barber, J. A., Shimasaki, S., Ling, N., & Hammond, J. M. (1992). Gonadotropin and cAMP modulation of IGE binding protein production in ovarian granulosa cells. American Journal of Physiology, 262(4), E497-E503. https://doi.org/10.1152/ajpendo.1992.262.4.E497.
  12. Haber, A. L., Biton, M., Rogel, N., Herbst, R. H., Shekhar, K., Smillie, C., Burgin, G., Delorey, T. M., Howitt, M. R., Katz, Y., Tirosh, I., Beyaz, S., Dionne, D., Zhang, M., Raychowdhury, R., Garrett, W. S., Rozenblatt-Rosen, O., Shi, H. N., Yilmaz, O., … Regev, A. (2017). A single-cell survey of the small intestinal epithelium. Nature, 551, 333-339. https://doi.org/10.1038/nature24489.
  13. Hakkarainen, J., Jokela, H., Pakarinen, P., Heikelä, H., Kätkänaho, L., Vandenput, L., Ohlsson, C., Zhang, F.-P., & Poutanen, M. (2015). Hydroxysteroid (17β)-dehydrogenase 1-deficient female mice present with normal puberty onset but are severely subfertile due to a defect in luteinization and progesterone production. The FASEB Journal, 29(9), 3806-3816. https://doi.org/10.1096/fj.14-269035.
  14. Johnson, P., Kent, T., Urick, M., & Giles, J. (2008). Expression and regulation of anti-mullerian hormone in an oviparous species, the hen. Biology of Reproduction, 78(1), 13-19.
  15. Knight, P. G., & Glister, C. (2006). TGF-β superfamily members and ovarian follicle development. Reproduction, 132(2), 191-206. https://doi.org/10.1530/rep.1.01074.
  16. Liu, Z., Zhang, G., Deng, M., Yang, H., Pang, J., Cai, Y., Wan, Y., & Wang, F. (2020). Inhibition of lysine-specific histone demethylase 1A results in meiotic aberration during oocyte maturation in vitro in goats. Theriogenology, 143, 168-178.
  17. Okada, M., Lee, L., Maekawa, R., Sato, S., Kajimura, T., Shinagawa, M., Tamura, I., Taketani, T., Asada, H., & Tamura, H. (2016). Epigenetic changes of the Cyp11a1 promoter region in granulosa cells undergoing luteinization during ovulation in female rats. Endocrinology, 157(9), 3344-3354. https://doi.org/10.1210/en.2016-1264.
  18. Racowsky, C., & Needleman, D.J. (2018). Cumulus cell gene expression as a potential biomarker for oocyte quality. Fertility and Sterility, 109(3), 438-439.
  19. Rimon-Dahari, N., Yerushalmi-Heinemann, L., Alyagor, L., & Dekel, N. (2016). Ovarian Folliculogenesis, Molecular Mechanisms of Cell Differentiation in Gonad Development. Switzerland:Springer. 167-190.
  20. Russell, D. L., Gilchrist, R. B., Brown, H. M., & Thompson, J. G. (2016). Bidirectional communication between cumulus cells and the oocyte: Old hands and new players? Theriogenology, 86(1), 62-68.
  21. Sohni, A., Tan, K., Song, H. W., Burow, D., de Rooij, D. G., Laurent, L. Hsieh, T. C., Rabah, R., Hammoud, S. S., Vicini, E., & Wilkinson, M. F. (2019). Wilkinson, The neonatal and adult human testis defined at the single-cell level. Cell Reports, 26, 1501-1517.e4.
  22. Tilly, J., Kowalski, K., & Johnson, A. L. (1991). Stage of ovarian follicular development associated with the initiation of steroidogenic competence in avian granulosa cells. Biology of Reproduction, 44(2), 305-314.
  23. Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Lennon, N. J., Livak, K. J., Mikkelsen, T. S., & Rinn, J. L. (2014). The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nature Biotechnology, 32, 381-386.
  24. Wang, M., Liu, X., Chang, G., Chen, Y., An, G., Yan, L., Gao, S., Xu, Y., Cui, Y., Dong, J., Chen, Y., Fan, X., Hu, Y., Song, K., Zhu, X., Gao, Y., Yao, Z., Bian, S., Hou, Y. … Qiao, J. (2018). Single-cell RNA sequencing analysis reveals sequential cell fate transition during human spermatogenesis. Cell Stem Cell, 23, 599-614.
  25. Wissing, M., Kristensen, S., Andersen, C., Mikkelsen, A., Høst, T., Borup, R., & Grøndahl, M. (2014). Identification of new ovulation-related genes in humans by comparing the transcriptome of granulosa cells before and after ovulation triggering in the same controlled ovarian stimulation cycle. Human Reproduction, 29(5), 997-1010.
  26. Yu, S., Zhao, Y., Lai, F., Chu, M., Hao, Y., Feng, Y., Zhang, H., Liu, J., Cheng, M., Li, L., Shen, W., & Min, L. (2017). LncRNA as ceRNAs may be involved in lactation process. Oncotarget, 8(58), 98014-98028.
  27. Zhang, W., Zhao, Y., Zhang, P., Hao, Y., Yu, S., Min, L., Li, L., Ma, D., Chen, L., Yi, B., Tang, X., Meng, Q., Liu, L., Wang, S., Shen, W., & Zhang, H. (2018). Decrease in male mouse fertility by hydrogen sulfide and/or ammonia can be inheritable. Chemosphere, 194, 147-157.
  28. Zhang, Y., Yan, Z., Qin, Q., Nisenblat, V., Chang, H., Yu, Y., Wang, T., Lu, C., Yang, M., Yang, S., Yao, Y., Zhu, X., Xia, X., Dang, Y., Ren, Y., Yuan, P., Li, R., Liu, P., Guo, H., … Yan, L. (2018). Transcriptome landscape of human folliculogenesis reveals oocyte and granulosa cell interactions. Molecular Cell, 72(6), 1021-1034.e4.
  29. Zhao, Y., Zhang, P., Ge, W., Feng, Y., Li, L., Sun, Z., Zhang, H., & Shen, W. (2020). Alginate oligosaccharides improve germ cell development and testicular microenvironment to rescue busulfan disrupted spermatogenesis. Theranostics, 10(7), 3308-3324.
  30. Zheng, X., Price, C. A., Tremblay, Y., Lussier, J. G., & Carriere, P. D. (2008). Role of transforming growth factor-b1 in gene expression and activity of estradiol and progesterone-generating enzymes in FSH-stimulated bovine granulosa cells. Reproduction, 136(4), 447.
  31. Zhu, G., Fang, C., Li, J., Mo, C., Wang, Y., & Li, J. (2019). Transcriptomic diversification of granulosa cells during follicular development in chicken. Scientific Reports, 9(1), 1-16. https://doi.org/10.1038/s41598-019-41132-1.

Grants

  1. 2017YFE0113600/National Key Research and Development Program of China
  2. 31772569/National Natural Science Foundation of China
  3. SDAIT-10-08/Technology System of Modern Agricultural Industry in Shandong Province

MeSH Term

Animals
Female
Fertility
Gene Expression Profiling
Goats
Granulosa Cells
Litter Size
Ovarian Follicle
RNA, Small Cytoplasmic

Chemicals

RNA, Small Cytoplasmic