Insights into the antitumor mechanism of ginsenosides Rg3.

Zongyu Liu, Tongjun Liu, Wei Li, Jiannan Li, Cuizhu Wang, Kai Zhang
Author Information
  1. Zongyu Liu: Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
  2. Tongjun Liu: Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
  3. Wei Li: Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
  4. Jiannan Li: Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China.
  5. Cuizhu Wang: Department of New Drug Research Office, College of Pharmacy of Jilin University, Changchun, 130000, China.
  6. Kai Zhang: Department of General Surgery, The Second Hospital of Jilin University, No.218 Ziqiang Street, Changchun, 130000, China. zhang_kai@jlu.edu.cn. ORCID

Abstract

Panax ginseng, an ancient herb, belonging to Chinese traditional medicine, is an important herb that has a remarkable impact on various diseases. Ginsenoside Rg3, one of the most abundant ginsenosides, exerts significant functions in the prevention of various types of cancers with few side effects. In the present review, its functional molecular mechanisms are explored, including the improvement of antioxidant and anti-inflammation properties, immune regulation, induction of tumor apoptosis, prevention of tumor invasion and metastasis, tumor proliferation and angiogenesis, and reduction of chemoresistance and radioresistance. On the other hand, metabolism, pharmacokinetics and clinical indications of Rg3 are also discussed. The biological functional role of ginsenoside Rg3 may be associated with that it is a steroid glycoside with diverse biological activities and many signaling pathway can be regulated. Many clinical trials are highly needed to confirm the functions of ginsenoside Rg3.

Keywords

References

Lee DY, Park CW, Lee SJ et al (2019) Anti-cancer effects of panax ginseng berry polysaccharides via activation of immune-related cells. Front Pharmacol 10:1411 [PMID: 32038228]
Lee JH, Leem DG, Chung KS et al (2018) Panaxydol derived from panax ginseng inhibits G1 cell cycle progression in non-small cell lung cancer via upregulation of intracellular Ca(2+) levels. Biol Pharm Bull 41(11):1701–1707 [PMID: 30381670]
Martoni AA, Cavanna L, Porzio G (2018) Letter to the editor: panax ginseng for cancer-related fatigue. J Natl Compr Canc Netw 16(4):342 [PMID: 29632052]
Wang Z, Liu R, Chen L et al (2020) Pharmacokinetics of ginsenoside Rh2, the major anticancer ingredient of ginsenoside H dripping pills, in healthy subjects. Clin Pharmacol Drug Dev. https://doi.org/10.1002/cpdd.877 [DOI: 10.1002/cpdd.877]
Chu Y, Zhang W, Kanimozhi G et al (2020) Ginsenoside Rg1 induces apoptotic cell death in triple-negative breast cancer cell lines and prevents carcinogen-induced breast tumorigenesis in sprague dawley rats. Evid Based Complem Alternat Med 2020:8886955
Song JH, Eum DY, Park SY et al (2020) Inhibitory effect of ginsenoside Rg3 on cancer stemness and mesenchymal transition in breast cancer via regulation of myeloid-derived suppressor cells. PLoS ONE 15(10):e0240533 [PMID: 33091036]
Park YJ, Cho M, Choi G et al (2020) A critical regulation of Th17 cell responses and autoimmune neuro-inflammation by ginsenoside Rg3. Biomolecules 10(1):1–7
Zhou T, Sun L, Yang S et al (2020) 20 (S)-ginsenoside rg3 protects kidney from diabetic kidney disease via renal inflammation depression in diabetic rats. J Diabetes Res. https://doi.org/10.1155/2020/7152176 [DOI: 10.1155/2020/7152176]
Wang H, Wu W, Wang G et al (2019) Protective effect of ginsenoside Rg3 on lung injury in diabetic rats. J Cell Biochem 120(3):3323–3330 [PMID: 30362612]
Jeong D, Irfan M, Kim SD et al (2017) Ginsenoside Rg3-enriched red ginseng extract inhibits platelet activation and in vivo thrombus formation. J Ginseng Res 41(4):548–555 [PMID: 29021703]
Akbari A, Khayamzadeh M, Salmanian R et al (2019) National cancer mortality-to-incidence ratio (MIR) in Iran (2005–2014). Int J Cancer Manage 12(6):1–6
Shi J, Xue J (2019) Inflammation and development of pancreatic ductal adenocarcinoma. Chin Clin Oncol 8(2):19–19 [PMID: 31070039]
Bessler H, Djaldetti M (2017) Capsaicin modulates the immune cross talk between human mononuclears and cells from two colon carcinoma lines. Nutr Cancer 69(1):14–20 [PMID: 27901346]
Lee HL, Jang JW, Lee SW et al (2019) Inflammatory cytokines and change of Th1/Th2 balance as prognostic indicators for hepatocellular carcinoma in patients treated with transarterial chemoembolization. Sci Rep 9(1):1–8
Sheikhpour E, Noorbakhsh P, Foroughi E et al (2018) A survey on the role of interleukin-10 in breast cancer: a narrative. Rep Biochem Mol Biol 7(1):30 [PMID: 30324115]
Park Y-J, Cho M, Choi G et al (2020) A critical regulation of Th17 cell responses and autoimmune neuro-inflammation by ginsenoside Rg3. Biomolecules 10(1):122 [>PMCID: ]
Tu C, Wan B, Zeng Y (2020) Ginsenoside Rg3 alleviates inflammation in a rat model of myocardial infarction via the SIRT1/NF-κB pathway. Exp Therap Med 20(6):1–1
Xin C, Kim J, Quan H et al (2019) Ginsenoside Rg3 promotes Fc gamma receptor-mediated phagocytosis of bacteria by macrophages via an extracellular signal-regulated kinase 1/2 and p38 mitogen-activated protein kinase-dependent mechanism. Int Immunopharmacol 77:105945 [PMID: 31644962]
Hodge G, Roscioli E, Jersmann H et al (2016) Steroid resistance in COPD is associated with impaired molecular chaperone Hsp90 expression by pro-inflammatory lymphocytes. Respir Res 17(1):135 [PMID: 27769261]
Sheng L, Lu B, Chen H et al (2019) Marine-steroid derivative 5α-androst-3β, 5α, 6β-triol protects retinal ganglion cells from ischemia-reperfusion injury by activating Nrf2 pathway. Marine Drugs 17(5):267 [>PMCID: ]
Misra P (2020) Dexamethasone may reduce mortality rate in COVID-19. Homœopathic Links.
Hayes JD, Dinkova-Kostova AT, Tew KD (2020) Oxidative stress in cancer. Cancer Cell 10:167–197
Choudhary MI (2020) Emerging classes of antioxidant to cancer therapy: a review of clinical and experimental studies. ar**Xiv:20***03.04538.
Morrell CN (2008) Reactive oxygen species: finding the right balance. Am Heart Assoc 10:571–572
Peng Y, Zhang R, Yang X et al (2019) Ginsenoside Rg3 suppresses the proliferation of prostate cancer cell line PC3 through ROS-induced cell cycle arrest. Oncol Lett 17(1):1139–1145 [PMID: 30655875]
Wei X, Su F, Su X et al (2012) Stereospecific antioxidant effects of ginsenoside Rg3 on oxidative stress induced by cyclophosphamide in mice. Fitoterapia 83(4):636–642 [PMID: 22310172]
Lee H, Kim J, Lee SY et al (2012) Processed Panax ginseng, sun ginseng, decreases oxidative damage induced by tert-butyl hydroperoxide via regulation of antioxidant enzyme and anti-apoptotic molecules in HepG2 cells. J Ginseng Res 36(3):248 [PMID: 23717125]
Mwaheb M, Mohammed A, Al-Galad G et al (2017) Effect of nandrolone decanoate (anabolic steroid) on the liver and kidney of male albino rats and the role of antioxidant (antox-silymarin) as adjuvant therapy. J Drug Metab Toxicol 8(1):1–11
Carneiro BA, El-Deiry WS (2020) Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 56:1–23
Hong S, Cai W, Huang Z et al (2020) Ginsenoside Rg3 enhances the anticancer effect of 5-FU in colon cancer cells via the PI3K/AKT pathway. Oncol Rep 44(4):1333–1342 [PMID: 32945504]
Qiu R, Qian F, Wang X et al (2019) Targeted delivery of 20 (S)-ginsenoside Rg3-based polypeptide nanoparticles to treat colon cancer. Biomed Microdev 21(1):18
Shan K, Wang Y, Hua H et al (2019) Ginsenoside Rg3 combined with oxaliplatin inhibits the proliferation and promotes apoptosis of hepatocellular carcinoma cells via downregulating PCNA and cyclin D1. Biol Pharm Bull 42(6):900–905 [PMID: 30930425]
Zhao L, Shou H, Chen L et al (2019) Effects of ginsenoside Rg3 on epigenetic modification in ovarian cancer cells. Oncol Rep 41(6):3209–3218 [PMID: 31002353]
Zheng X, Chen W, Hou H et al (2017) Ginsenoside 20 (S)-Rg3 induced autophagy to inhibit migration and invasion of ovarian cancer. Biomed Pharmacother 85:620–626 [PMID: 27899249]
Liu T, Zuo L, Guo D et al (2019) Ginsenoside Rg3 regulates DNA damage in non-small cell lung cancer cells by activating VRK1/P53BP1 pathway. Biomed Pharmacother 120:109483 [PMID: 31629252]
Wu Q, Deng J, Fan D et al (2018) Ginsenoside Rh4 induces apoptosis and autophagic cell death through activation of the ROS/JNK/p53 pathway in colorectal cancer cells. Biochem Pharmacol 148:64–74 [PMID: 29225132]
Yogosawa S, Yoshida K (2018) Tumor suppressive role for kinases phosphorylating p53 in DNA damage-induced apoptosis. Cancer Sci 109(11):3376–3382 [PMID: 30191640]
Zheng X, Zhou Y, Chen W et al (2018) Ginsenoside 20 (S)-Rg3 prevents PKM2-targeting miR-324-5p from H19 sponging to antagonize the Warburg effect in ovarian cancer cells. Cell Physiol Biochem 51(3):1340–1353 [PMID: 30481782]
Li Y, Lu J, Bai F et al (2018) Ginsenoside Rg3 suppresses proliferation and induces apoptosis in human osteosarcoma. BioMed Res Int. https://doi.org/10.1155/2018/4306579 [DOI: 10.1155/2018/4306579]
Jiang J, Yuan Z, Sun Y et al (2017) Ginsenoside Rg3 enhances the anti-proliferative activity of erlotinib in pancreatic cancer cell lines by downregulation of EGFR/PI3K/Akt signaling pathway. Biomed Pharmacother 96:619–625 [PMID: 29035827]
Jiang J-W, Chen X-M, Chen X-H et al (2011) Ginsenoside Rg3 inhibit hepatocellular carcinoma growth via intrinsic apoptotic pathway. World J Gastroenterol 17(31):3605 [PMID: 21987607]
Lv L, Zheng L, Dong D et al (2013) Dioscin, a natural steroid saponin, induces apoptosis and DNA damage through reactive oxygen species: a potential new drug for treatment of glioblastoma multiforme. Food Chem Toxicol 59:657–669 [PMID: 23871826]
Whiteside TL (2017) The effect of tumor-derived exosomes on immune regulation and cancer immunotherapy. Fut Oncol 13(28):2583–2592
Owen KL, Brockwell NK, Parker BS (2019) JAK-STAT signaling: a double-edged sword of immune regulation and cancer progression. Cancers 11(12):2002 [>PMCID: ]
Kim SK, Chung J-H, Lee B-C et al (2014) Influence of Panax ginseng on alpha-adrenergic receptor of benign prostatic hyperplasia. Int Neurourol J 18(4):179 [PMID: 25558416]
Tang M, Huang L-L, Du Q-Q et al (2020) Ginsenoside 3β-O-Glc-DM (C3DM) enhances the antitumor activity of Taxol on Lewis lung cancer by targeting the interleukin-6/Jak2/STAT3 and interleukin-6/AKT signaling pathways. World J Tradition Chin Med 6:434–440
Tian L, Shen D, Li X et al (2016) Ginsenoside Rg3 inhibits epithelial-mesenchymal transition (EMT) and invasion of lung cancer by down-regulating FUT4. Oncotarget 7(2):1619 [PMID: 26636541]
Jiang Z, Yang Y, Yang Y et al (2017) Ginsenoside Rg3 attenuates cisplatin resistance in lung cancer by downregulating PD-L1 and resuming immune. Biomed Pharmacother 96:378–383 [PMID: 29031195]
Son KJ, Choi KR, Lee SJ et al (2016) Immunogenic cell death induced by ginsenoside Rg3: significance in dendritic cell-based anti-tumor immunotherapy. Immune Netw 16(1):75–84 [PMID: 26937234]
Gambhir L, Checker R, Sharma D et al (2015) Thiol dependent NF-κB suppression and inhibition of T-cell mediated adaptive immune responses by a naturally occurring steroidal lactone Withaferin A. Toxicol Appl Pharmacol 289(2):297–312 [PMID: 26408225]
Kiang KM, Zhang P, Li N et al (2020) Loss of cytoskeleton protein ADD3 promotes tumor growth and angiogenesis in glioblastoma multiforme. Cancer Lett 474:118–126 [PMID: 31958485]
Nuevo-Tapioles C, Santacatterina F, Stamatakis K et al (2020) Coordinate beta-adrenergic inhibition of mitochondrial activity and angiogenesis arrest tumor growth. Nat Commun 11(1):3606 [PMID: 32681016]
Zeng T, Tang Z, Liang L et al (2020) PDSS2-Del2, a new variant of PDSS2, promotes tumor cell metastasis and angiogenesis in hepatocellular carcinoma via activating NF-kappaB. Mol Oncol 14:3184–3197 [PMID: 33064899]
Fu LQ, Du WL, Cai MH et al (2020) The roles of tumor-associated macrophages in tumor angiogenesis and metastasis. Cell Immunol 353:104119 [PMID: 32446032]
Jiang S, Gao Y, Yu QH et al (2020) P-21-activated kinase 1 contributes to tumor angiogenesis upon photodynamic therapy via the HIF-1alpha/VEGF pathway. Biochem Biophys Res Commun 526(1):98–104 [PMID: 32197838]
Zhou H, Binmadi NO, Yang YH et al (2020) Retraction Note to: semaphorin 4D cooperates with VEGF to promote angiogenesis and tumor progression. Angiogenesis 23(2):267 [PMID: 32157473]
Nakhjavani M, Smith E, Townsend AR et al (2020) Anti-angiogenic properties of ginsenoside Rg3. Molecules 25(21):1–9
Zeng D, Wang J, Kong P et al (2014) Ginsenoside Rg3 inhibits HIF-1α and VEGF expression in patient with acute leukemia via inhibiting the activation of PI3K/Akt and ERK1/2 pathways. Int J Clin Exp Pathol 7(5):2172 [PMID: 24966925]
Wang X, Li K, Lin N et al (2010) Effects of ginsenoside Rg3 on growth and VEGF, bFGF expressions of transplanted human lung squamous cell carcinoma in nude mice. Liaoning J Tradition Chin Med 2:64
Shin Y-M, Jung H-J, Choi W-Y et al (2013) Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20 (S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 40(1):269–279 [PMID: 23054007]
Xu T, Jin Z, Yuan Y et al (2016) Ginsenoside Rg3 serves as an adjuvant chemotherapeutic agent and VEGF inhibitor in the treatment of non-small cell lung cancer: a meta-analysis and systematic review. Evid Based Complement Alternat Med 2016:7826753 [PMID: 27800005]
Tang M, Bian W, Cheng L et al (2018) Ginsenoside Rg3 inhibits keloid fibroblast proliferation, angiogenesis and collagen synthesis in vitro via the TGFbeta/Smad and ERK signaling pathways. Int J Mol Med 41(3):1487–1499 [PMID: 29328420]
Shin YM, Jung HJ, Choi WY et al (2013) Antioxidative, anti-inflammatory, and matrix metalloproteinase inhibitory activities of 20(S)-ginsenoside Rg3 in cultured mammalian cell lines. Mol Biol Rep 40(1):269–279 [PMID: 23054007]
Martens B, Drebert Z (2019) Glucocorticoid-mediated effects on angiogenesis in solid tumors. J Steroid Biochem Mol Biol 188:147–155 [PMID: 30654109]
Zhang S, Sun WY, Wu JJ et al (2016) Decreased expression of the type III TGF-beta receptor enhances metastasis and invasion in hepatocellullar carcinoma progression. Oncol Rep 35(4):2373–2381 [PMID: 26882862]
Li J, Qi Y (2019) Ginsenoside Rg3 inhibits cell growth, migration and invasion in Caco-2 cells by downregulation of lncRNA CCAT1. Exp Mol Pathol 106:131–138 [PMID: 30633886]
Guo J, Yu X, Gu J et al (2016) Regulation of CXCR4/AKT-signaling-induced cell invasion and tumor metastasis by RhoA, Rac-1, and Cdc42 in human esophageal cancer. Tumour Biol 37(5):6371–6378 [PMID: 26631033]
Wu W, Zhou Q, Zhao W (2018) Ginsenoside Rg3 inhibition of thyroid cancer metastasis is associated with alternation of actin skeleton. J Med Food 21(9):849–857 [PMID: 30136914]
Zhang H, Tang QF, Sun MY et al (2018) ARHGAP9 suppresses the migration and invasion of hepatocellular carcinoma cells through up-regulating FOXJ2/E-cadherin. Cell Death Dis 9(9):916 [PMID: 30206221]
Sun MY, Song YN, Zhang M et al (2019) Ginsenoside Rg3 inhibits the migration and invasion of liver cancer cells by increasing the protein expression of ARHGAP9. Oncol Lett 17(1):965–973 [PMID: 30655855]
Imaizumi H, Ishibashi K, Takenoshita S et al (2018) Aquaporin 1 expression is associated with response to adjuvant chemotherapy in stage II and III colorectal cancer. Oncol Lett 15(5):6450–6456 [PMID: 29725400]
Pan XY, Guo H, Han J et al (2012) Ginsenoside Rg3 attenuates cell migration via inhibition of aquaporin 1 expression in PC-3M prostate cancer cells. Eur J Pharmacol 683(1–3):27–34 [PMID: 22426160]
Ren T, Zhu L, Cheng M (2017) CXCL10 accelerates EMT and metastasis by MMP-2 in hepatocellular carcinoma. Am J Transl Res 9(6):2824 [PMID: 28670372]
Wang D, Wu C, Liu D et al (2019) Ginsenoside Rg3 inhibits migration and invasion of nasopharyngeal carcinoma cells and suppresses epithelial mesenchymal transition. Biomed Res Int 2019:8407683 [PMID: 30915362]
Heerboth S, Housman G, Leary M et al (2015) EMT and tumor metastasis. Clin Transl Med 4(1):6 [PMID: 25852822]
Ko H (2015) Geraniin inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses A549 lung cancer migration, invasion and anoikis resistance. Bioorg Med Chem Lett 25(17):3529–3534 [PMID: 26169124]
Kim Y-J, Choi W-I, Jeon B-N et al (2014) Stereospecific effects of ginsenoside 20-Rg3 inhibits TGF-β1-induced epithelial–mesenchymal transition and suppresses lung cancer migration, invasion and anoikis resistance. Toxicology 322:23–33 [PMID: 24793912]
Hu Y, Wu A-Y, Xu C et al (2019) MicroRNA-449a inhibits tumor metastasis through AKT/ERK1/2 inactivation by targeting steroid receptor coactivator (SRC) in endometrial cancer. J Cancer 10(2):547 [PMID: 30719151]
Ryken TC, Kuo JS, Prabhu RS et al (2019) Congress of neurological surgeons systematic review and evidence-based guidelines on the role of steroids in the treatment of adults with metastatic brain tumors. Neurosurgery 84:E189 [PMID: 30629207]
Amrutkar M, Gladhaug IP (2017) Pancreatic cancer chemoresistance to gemcitabine. Cancers 9(11):157 [>PMCID: ]
Pan L, Zhang T, Cao H et al (2020) Ginsenoside Rg3 for chemotherapy-induced myelosuppression: a meta-analysis and systematic review. Front Pharmacol 11:649 [PMID: 32477128]
Zhang Y, Han CY, Duan FG et al (2019) p53 sensitizes chemoresistant non-small cell lung cancer via elevation of reactive oxygen species and suppression of EGFR/PI3K/AKT signaling. Cancer Cell Int 19(1):188 [PMID: 31360122]
Kim SM, Lee SY, Yuk DY et al (2009) Inhibition of NF-κB by ginsenoside Rg3 enhances the susceptibility of colon cancer cells to docetaxel. Arch Pharmacal Res 32(5):755–765
Liu T, Duo L, Duan P (2018) Ginsenoside Rg3 sensitizes colorectal cancer to radiotherapy through downregulation of proliferative and angiogenic biomarkers. Evid-Based Complem Altern Med. https://doi.org/10.1155/2018/1580427 [DOI: 10.1155/2018/1580427]
Mijatovic T, Dufrasne F, Kiss R (2012) Cardiotonic steroids-mediated targeting of the Na+/K+-ATPase to combat chemoresistant cancers. Curr Med Chem 19(5):627–646 [PMID: 22204337]
Wu R, Ru Q, Chen L et al (2014) Stereospecificity of ginsenoside Rg3 in the promotion of cellular immunity in hepatoma H22-bearing mice. J Food Sci 79(7):H1430–H1435 [PMID: 25041540]
Nakhjavani M, Palethorpe HM, Tomita Y et al (2019) Stereoselective anti-cancer activities of ginsenoside Rg3 on triple negative breast cancer cell models. Pharmaceuticals 12(3):117 [>PMCID: ]
Qian T, Cai Z, Wong RN et al (2005) In vivo rat metabolism and pharmacokinetic studies of ginsenoside Rg3. J Chromatogr B 816(1–2):223–232
Cai Z, Qian T, Wong RN et al (2003) Liquid chromatography–electrospray ionization mass spectrometry for metabolism and pharmacokinetic studies of ginsenoside Rg3. Anal Chim Acta 492(1–2):283–293
Sung Kang K, Young Kim H, Yamabe N et al (2007) Preventive effect of 20 (S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. Free Radic Res 41(10):1181–1188
Pan C, Wang Y et al (2016) Study on mice in-vivo targeting of three ginsenoside Rg3 nanoformulations. Tradit Chin Drug Res Clin Pharmacol 6:17
Nakhjavani M, Hardingham JE, Palethorpe HM et al (2019) Ginsenoside Rg3: potential molecular targets and therapeutic indication in metastatic breast cancer. Medicines 6(1):17 [>PMCID: ]
Li Y, Wang Y, Niu K et al (2016) Clinical benefit from EGFR-TKI plus ginsenoside Rg3 in patients with advanced non-small cell lung cancer harboring EGFR active mutation. Oncotarget 7(43):70535–70545 [PMID: 27655708]
Zhou B, Yan Z, Liu R et al (2016) Prospective study of transcatheter arterial chemoembolization (TACE) with ginsenoside Rg3 versus TACE alone for the treatment of patients with advanced hepatocellular carcinoma. Radiology 280(2):630–639 [PMID: 26885681]
Sun M, Ye Y, Xiao L et al (2017) Anticancer effects of ginsenoside Rg3. Int J Mol Med 39(3):507–518 [PMID: 28098857]
Bae PJ, Doyun K, Fen ZY et al (2014) Stereoselective inhibitory assessment of ginsenoside Rg3, Rg2, Rh2, Rh1 and proropanaxadiol epimers on six UDP-gluronosyltransferases in human liver microsomes. 추계총회 및 학술대회 pp 304–304
Zhang Y-H, Li H-D, Li B et al (2014) Ginsenoside Rg3 induces DNA damage in human osteosarcoma cells and reduces MNNG-induced DNA damage and apoptosis in normal human cells. Oncol Rep 31(2):919–925 [PMID: 24337872]
Kim B-M, Kim D-H, Park J-H et al (2013) Ginsenoside Rg3 induces apoptosis of human breast cancer (MDA-MB-231) cells. J Cancer Prev 18(2):177 [PMID: 25337544]
He K, Liu Y, Yang Y et al (2005) A dammarane glycoside derived from ginsenoside Rb3. Chem Pharm Bull (Tokyo) 53(2):177–179
Kim B-M, Kim D-H, Park J-H et al (2014) Ginsenoside Rg3 inhibits constitutive activation of NF-κB signaling in human breast cancer (MDA-MB-231) cells: ERK and Akt as potential upstream targets. J Cancer Prev 19(1):23 [PMID: 25337569]
Chen X-p, Qian L-l, Jiang H et al (2011) Ginsenoside rg3 inhibits cxcr 4 expression and related migrations in a breast cancer cell line. Int J Clin Oncol 16(5):519–523 [PMID: 21455623]
Yuan H-D, Quan H-Y, Zhang Y et al (2010) 20 (S)-Ginsenoside Rg3-induced apoptosis in HT-29 colon cancer cells is associated with AMPK signaling pathway. Mol Med Rep 3(5):825–831 [PMID: 21472321]
Lee SY, Kim GT, Roh SH et al (2009) Proteomic analysis of the anti-cancer effect of 20S-ginsenoside Rg3 in human colon cancer cell lines. Biosci Biotechnol Biochem 56:0903051360–0903051360
Luo X, Wang C-Z, Chen J et al (2008) Characterization of gene expression regulated by American ginseng and ginsenoside Rg3 in human colorectal cancer cells. Int J Oncol 32(5):975–983 [PMID: 18425323]
He B-C, Gao J-L, Luo X et al (2011) Ginsenoside Rg3 inhibits colorectal tumor growth through the down-regulation of Wnt/ss-catenin signaling. Int J Oncol 38(2):437–445 [PMID: 21152855]
Junmin S, Hongxiang L, Zhen L et al (2015) Ginsenoside Rg3 inhibits colon cancer cell migration by suppressing nuclear factor kappa B activity. J Tradit Chin Med 35(4):440–444 [PMID: 26427115]
Chang L, Huo B, Lv Y et al (2014) Ginsenoside Rg3 enhances the inhibitory effects of chemotherapy on esophageal squamous cell carcinoma in mice. Mol Clin Oncol 2(6):1043–1046 [PMID: 25279195]
Qiu X-M, Bai X, Jiang H-F et al (2014) 20-(s)-ginsenoside Rg3 induces apoptotic cell death in human leukemic U937 and HL-60 cells through PI3K/Akt pathways. Anticancer Drugs 25(9):1072–1080 [PMID: 25035959]
Wu K, Li N, Sun H et al (2015) Endoplasmic reticulum stress activation mediates Ginseng Rg3-induced anti-gallbladder cancer cell activity. Biochem Biophys Res Commun 466(3):369–375 [PMID: 26361144]
Zhang F, Li M, Wu X et al (2015) 20 (S)-ginsenoside Rg3 promotes senescence and apoptosis in gallbladder cancer cells via the p53 pathway. Drug Design Dev Therapy 9:3969
Park E-H, Kim Y-J, Yamabe N et al (2014) Stereospecific anticancer effects of ginsenoside Rg3 epimers isolated from heat-processed American ginseng on human gastric cancer cell. J Ginseng Res 38(1):22–27 [PMID: 24558306]
Aziz F, Wang X, Liu J et al (2016) Ginsenoside Rg3 induces FUT4-mediated apoptosis in H. pylori CagA-treated gastric cancer cells by regulating SP1 and HSF1 expressions. Toxicol In Vitro 31:158–166 [PMID: 26427350]
Kim BJ, Nah SY, Jeon JH et al (2011) Transient receptor potential melastatin 7 channels are involved in ginsenoside Rg3-induced apoptosis in gastric cancer cells. Basic Clin Pharmacol Toxicol 109(4):233–239 [PMID: 21443732]
Choi YJ, Lee HJ, Kang DW et al (2013) Ginsenoside Rg3 induces apoptosis in the U87MG human glioblastoma cell line through the MEK signaling pathway and reactive oxygen species. Oncol Rep 30(3):1362–1370 [PMID: 23783960]
Sin S, Kim SY, Kim SS (2012) Chronic treatment with ginsenoside Rg3 induces Akt-dependent senescence in human glioma cells. Int J Oncol 41(5):1669–1674 [PMID: 22922739]
Joo EJ, Chun J, Ha YW et al (2015) Novel roles of ginsenoside Rg3 in apoptosis through downregulation of epidermal growth factor receptor. Chem Biol Interact 233:25–34 [PMID: 25824408]
Lee J-Y, Jung KH, Morgan MJ et al (2013) Sensitization of TRAIL-induced cell death by 20 (S)-ginsenoside Rg3 via CHOP-mediated DR5 upregulation in human hepatocellular carcinoma cells. Mol Cancer Ther 12(3):274–285 [PMID: 23053497]
Xie Q, Wen H, Zhang Q et al (2017) Inhibiting PI3K-AKt signaling pathway is involved in antitumor effects of ginsenoside Rg3 in lung cancer cell. Biomed Pharmacother 85:16–21 [PMID: 27930981]
Zhang C, Liu L, Yu Y et al (2012) Antitumor effects of ginsenoside Rg3 on human hepatocellular carcinoma cells. Mol Med Rep 5(5):1295–1298 [PMID: 22366885]
Park H-M, Kim S-J, Kim J-S et al (2012) Reactive oxygen species mediated ginsenoside Rg3-and Rh2-induced apoptosis in hepatoma cells through mitochondrial signaling pathways. Food Chem Toxicol 50(8):2736–2741 [PMID: 22634290]
Shan X, Aziz F, Tian LL et al (2015) Ginsenoside Rg3-induced EGFR/MAPK pathway deactivation inhibits melanoma cell proliferation by decreasing FUT4/LeY expression. Int J Oncol 46(4):1667–1676 [PMID: 25672851]
Luo Y, Zhang P, Zeng HQ et al (2015) Ginsenoside Rg3 induces apoptosis in human multiple myeloma cells via the activation of Bcl-2-associated X protein. Mol Med Rep 12(3):3557–3562 [PMID: 25998024]
Shan X, Tian LL, Zhang YM et al (2015) Ginsenoside Rg3 suppresses FUT4 expression through inhibiting NF-κB/p65 signaling pathway to promote melanoma cell death. Int J Oncol 47(2):701–709 [PMID: 26094873]
Shan X, Fu Y-S, Aziz F et al (2014) Ginsenoside Rg3 inhibits melanoma cell proliferation through down-regulation of histone deacetylase 3 (HDAC3) and increase of p53 acetylation. PLoS ONE 9(12):e115401 [PMID: 25521755]
Li Y, Yang T, Li J et al (2016) Inhibition of multiple myeloma cell proliferation by ginsenoside Rg3 via reduction in the secretion of IGF-1. Mol Med Rep 14(3):2222–2230 [PMID: 27430248]
Chen J, Peng H, Ou-Yang X et al (2008) Research on the antitumor effect of ginsenoside Rg3 in B16 melanoma cells. Melanoma Res 18(5):322–329 [PMID: 18781130]
Lee SG, Kang YJ, Nam J-O (2015) Anti-metastasis effects of ginsenoside Rg3 in B16F10 cells. J Microbiol Biotechnol 25(12):1997–2006 [PMID: 26370799]
Wang J-H, Nao J-F, Zhang M et al (2014) 20 (s)-ginsenoside Rg3 promotes apoptosis in human ovarian cancer HO-8910 cells through PI3K/Akt and XIAP pathways. Tumor Biol 35(12):11985–11994
Guo J-Q, Zheng Q-H, Chen H et al (2014) Ginsenoside Rg3 inhibition of vasculogenic mimicry in pancreatic cancer through downregulation of VE-cadherin/EphA2/MMP9/MMP2 expression. Int J Oncol 45(3):1065–1072 [PMID: 24938458]

MeSH Term

Animals
Antineoplastic Agents
Apoptosis
Drug Resistance, Neoplasm
Ginsenosides
Humans
Neoplasms
Neovascularization, Pathologic

Chemicals

Antineoplastic Agents
Ginsenosides
ginsenoside Rg3

Word Cloud

Similar Articles

Cited By