Operando Surface Spectroscopy and Microscopy during Catalytic Reactions: From Clusters via Nanoparticles to Meso-Scale Aggregates.

Günther Rupprechter
Author Information
  1. Günther Rupprechter: Institute of Materials Chemistry, Technische Universität Wien, Getreidemarkt 9/BC/01, Vienna, 1060, Austria. ORCID

Abstract

Operando characterization of working catalysts, requiring per definitionem the simultaneous measurement of catalytic performance, is crucial to identify the relevant catalyst structure, composition and adsorbed species. Frequently applied operando techniques are discussed, including X-ray absorption spectroscopy, near ambient pressure X-ray photoelectron spectroscopy and infrared spectroscopy. In contrast to these area-averaging spectroscopies, operando surface microscopy by photoemission electron microscopy delivers spatially-resolved data, directly visualizing catalyst heterogeneity. For thorough interpretation, the experimental results should be complemented by density functional theory. The operando approach enables to identify changes of cluster/nanoparticle structure and composition during ongoing catalytic reactions and reveal how molecules interact with surfaces and interfaces. The case studies cover the length-scales from clusters via nanoparticles to meso-scale aggregates, and demonstrate the benefits of specific operando methods. Restructuring, ligand/atom mobility, and surface composition alterations during the reaction may have pronounced effects on activity and selectivity. The nanoscale metal/oxide interface steers catalytic performance via a long ranging effect. Combining operando spectroscopy with switching gas feeds or concentration-modulation provides further mechanistic insights. The obtained fundamental understanding is a prerequisite for improving catalytic performance and for rational design.

Keywords

References

J Am Chem Soc. 2012 May 30;134(21):8968-74 [PMID: 22563752]
Phys Chem Chem Phys. 2012 Oct 14;14(38):13249-54 [PMID: 22918269]
Angew Chem Int Ed Engl. 2008;47(19):3524-35 [PMID: 18357601]
Rev Sci Instrum. 2020 Nov 1;91(11):113704 [PMID: 33261460]
Science. 2008 Nov 7;322(5903):932-4 [PMID: 18845713]
Catal Letters. 2013 Jun;143(6):517-530 [PMID: 23794790]
Phys Chem Chem Phys. 2014 Jul 21;16(27):13827-37 [PMID: 24905791]
Phys Rev Lett. 2002 Jun 17;88(24):246103 [PMID: 12059319]
Phys Chem Chem Phys. 2020 May 28;22(20):11174-11196 [PMID: 32393932]
Chem Rev. 2019 Jun 26;119(12):6822-6905 [PMID: 31181905]
ACS Energy Lett. 2019 Jun 14;4(6):1484-1495 [PMID: 31259247]
J Am Chem Soc. 2010 Jun 23;132(24):8280-1 [PMID: 20515047]
Acc Chem Res. 2014 Oct 21;47(10):3071-9 [PMID: 25247260]
J Phys Condens Matter. 2012 Jun 6;24(22):225006 [PMID: 22565149]
Langmuir. 2010 Nov 2;26(21):16330-8 [PMID: 20715880]
Nanomaterials (Basel). 2021 Jan 07;11(1): [PMID: 33430403]
Angew Chem Int Ed Engl. 2013 May 3;52(19):5101-5 [PMID: 23576363]
Nat Commun. 2014 Dec 03;5:5634 [PMID: 25465918]
Chemphyschem. 2010 Oct 25;11(15):3231-5 [PMID: 20690188]
ACS Catal. 2018 Mar 2;8(3):2060-2070 [PMID: 29527401]
Angew Chem Int Ed Engl. 2019 Sep 23;58(39):13961-13968 [PMID: 31339617]
Nat Commun. 2020 Jul 13;11(1):3489 [PMID: 32661223]
Chem Mater. 2017 May 23;29(10):4511-4522 [PMID: 28572705]
Science. 2015 Oct 9;350(6257):185-9 [PMID: 26450207]
J Synchrotron Radiat. 2016 Jan;23(1):260-6 [PMID: 26698072]
Catal Letters. 2016;146(10):1867-1874 [PMID: 32355436]
Chem Commun (Camb). 2008 Jan 21;(3):320-2 [PMID: 18399194]
Science. 2005 Jul 29;309(5735):752-5 [PMID: 16051791]
Nanoscale. 2015 Oct 28;7(40):17012-9 [PMID: 26415984]
J Phys Chem B. 2005 Feb 17;109(6):2377-86 [PMID: 16851232]
Top Catal. 2017;60(19):1722-1734 [PMID: 29238151]
Nat Commun. 2018 Feb 9;9(1):600 [PMID: 29426883]
Angew Chem Int Ed Engl. 2017 Feb 20;56(9):2318-2323 [PMID: 28111850]
ACS Nano. 2020 Apr 28;14(4):3725-3735 [PMID: 32307982]
Chem Sci. 2015 Jul 1;6(7):3868-3880 [PMID: 29218158]
Ultramicroscopy. 2019 May;200:105-110 [PMID: 30851711]
Chemphyschem. 2003 Oct 17;4(10):1041-7 [PMID: 14595999]
Science. 2021 Feb 5;371(6529):626-632 [PMID: 33542136]
J Phys Chem C Nanomater Interfaces. 2019 Apr 4;123(13):8112-8121 [PMID: 30976376]
Chem Commun (Camb). 2002 Jan 21;(2):97-110 [PMID: 12120361]
Phys Rev Lett. 1990 Dec 10;65(24):3013-3016 [PMID: 10042757]
Nat Commun. 2014 Sep 15;5:4885 [PMID: 25222116]
Chem Soc Rev. 2010 Dec;39(12):4951-5001 [PMID: 21038053]
Acc Chem Res. 2014 Mar 18;47(3):740-9 [PMID: 24555537]
Nat Commun. 2019 Nov 25;10(1):5330 [PMID: 31767838]
Nat Commun. 2017 Sep 18;8(1):581 [PMID: 28924155]
J Synchrotron Radiat. 2007 Jul;14(Pt 4):345-54 [PMID: 17587660]
Catal Letters. 2019;149(5):1137-1146 [PMID: 30971855]
Rev Sci Instrum. 2014 Jul;85(7):074102 [PMID: 25085153]
Chem Rev. 2020 Apr 22;120(8):3890-3938 [PMID: 32223178]
Acc Chem Res. 2013 Aug 20;46(8):1740-8 [PMID: 23815772]
Inorg Chem. 2016 Feb 1;55(3):999-1001 [PMID: 26760220]
J Chem Phys. 2016 Jan 28;144(4):044706 [PMID: 26827227]
Phys Chem Chem Phys. 2007 Jul 21;9(27):3541-58 [PMID: 17612720]
Chemistry. 2020 Jun 10;26(33):7395-7404 [PMID: 32118340]
Nat Commun. 2020 May 1;11(1):2133 [PMID: 32358583]
Chem Soc Rev. 2010 Dec;39(12):4571-84 [PMID: 20890489]
Catal Letters. 2013 Mar;143(3):235-240 [PMID: 23482699]
Catal Sci Technol. 2015 Feb 26;5(2):967-978 [PMID: 25815163]
Chem Soc Rev. 2012 Dec 21;41(24):7994-8008 [PMID: 23011345]
J Am Chem Soc. 2015 Jul 15;137(27):8676-9 [PMID: 26115184]
Chem Rev. 2016 Jan 27;116(2):323-421 [PMID: 26741024]
Chem Commun (Camb). 2005 Apr 7;(13):1761-3 [PMID: 15791324]
Chem Rev. 2016 Sep 28;116(18):10346-413 [PMID: 27585252]
Nanoscale. 2016 Jun 7;8(21):11130-5 [PMID: 27180647]
Nat Commun. 2016 Aug 30;7:12634 [PMID: 27572475]
Chem Commun (Camb). 2015 May 7;51(37):7911-4 [PMID: 25858347]
Science. 1982 Jul 9;217(4555):111-21 [PMID: 17770242]
Phys Chem Chem Phys. 2010 Jun 7;12(21):5634-46 [PMID: 20436968]
Nat Chem. 2017 Aug 24;9(9):833-834 [PMID: 28837164]
Science. 2002 Mar 15;295(5562):2053-5 [PMID: 11896271]
Nat Commun. 2021 Jan 4;12(1):69 [PMID: 33398022]
J Am Chem Soc. 2002 Dec 11;124(49):14770-9 [PMID: 12465990]
Chem Soc Rev. 2012 Jan 7;41(1):192-210 [PMID: 21743940]
J Phys Chem B. 2005 Nov 3;109(43):20454-62 [PMID: 16853647]
Chem Soc Rev. 2008 Sep;37(9):1847-59 [PMID: 18762834]
Nanoscale Adv. 2019 Nov 7;2(1):55-69 [PMID: 36133968]
J Am Chem Soc. 2017 Aug 9;139(31):10588-10596 [PMID: 28657741]
ChemCatChem. 2018 Dec 7;10(23):5372-5376 [PMID: 30713589]
Surf Sci. 2016 Jan;643:52-58 [PMID: 26865736]
Rev Sci Instrum. 2018 Apr;89(4):045104 [PMID: 29716385]
Angew Chem Int Ed Engl. 2006 Jul 10;45(28):4651-4 [PMID: 16789051]
Science. 2004 Oct 8;306(5694):252-5 [PMID: 15331772]
ACS Nano. 2016 May 24;10(5):5063-9 [PMID: 27158734]
Small. 2021 Jul;17(27):e2004289 [PMID: 33694320]
Science. 2016 Jan 29;351(6272):475-8 [PMID: 26823421]
J Phys Chem C Nanomater Interfaces. 2013 Jun 13;117(23):12054-12060 [PMID: 23785524]
Catal Letters. 2018;148(10):2947-2956 [PMID: 30393447]
ACS Catal. 2018 Sep 7;8(9):8630-8641 [PMID: 30221030]
Angew Chem Int Ed Engl. 2016 Jun 20;55(26):7455-9 [PMID: 27144344]
Phys Rev Lett. 1995 Nov 6;75(19):3564-3567 [PMID: 10059618]
Angew Chem Int Ed Engl. 2009;48(27):4910-43 [PMID: 19536746]
Phys Chem Chem Phys. 2018 Feb 14;20(7):5312-5318 [PMID: 29406541]
Angew Chem Int Ed Engl. 2004 Jan;43(1):118-21 [PMID: 14694489]
Chem Soc Rev. 2010 Dec;39(12):5002-17 [PMID: 21038054]
Philos Trans A Math Phys Eng Sci. 2016 Feb 28;374(2061): [PMID: 26755754]
Chem Soc Rev. 2010 Dec;39(12):4602-14 [PMID: 20936228]
Science. 2012 Mar 9;335(6073):1209-12 [PMID: 22403387]
Chem Soc Rev. 2013 Jul 7;42(13):5833-57 [PMID: 23598709]
J Synchrotron Radiat. 2018 Nov 1;25(Pt 6):1745-1752 [PMID: 30407185]
Surf Sci. 2011 Dec;605(23-24):1999-2005 [PMID: 22140277]
J Synchrotron Radiat. 2011 May;18(Pt 3):447-55 [PMID: 21525654]
ACS Nano. 2012 Jul 24;6(7):6014-22 [PMID: 22690649]
Chem Sci. 2020 Oct 5;11(42):11394-11403 [PMID: 34094381]
Nat Chem. 2012 Jul 24;4(8):597-8 [PMID: 22824888]
Chem Rec. 2016 Oct;16(5):2388-2404 [PMID: 27523734]
Nature. 2005 Oct 20;437(7062):1098-9 [PMID: 16237427]
J Phys Chem B. 2006 Mar 16;110(10):4947-52 [PMID: 16526735]
J Synchrotron Radiat. 2005 Jul;12(Pt 4):537-41 [PMID: 15968136]
Science. 2011 Aug 5;333(6043):736-9 [PMID: 21817048]
J Phys Chem C Nanomater Interfaces. 2019 Feb 21;123(7):4217-4227 [PMID: 31057690]
J Am Chem Soc. 2015 Jan 28;137(3):1206-12 [PMID: 25549276]
Nanoscale. 2020 Jun 25;12(24):12809-12816 [PMID: 32319978]
Angew Chem Int Ed Engl. 2012 Oct 1;51(40):10041-4 [PMID: 22961996]
Science. 2003 Mar 14;299(5613):1688-91 [PMID: 12637733]
J Phys Chem C Nanomater Interfaces. 2020 Oct 29;124(43):23626-23636 [PMID: 33154783]
ACS Catal. 2021 Jan 1;11(1):208-214 [PMID: 33425478]
Nat Mater. 2013 Aug;12(8):724-8 [PMID: 23749267]
Nat Chem. 2014 Aug;6(8):732-8 [PMID: 25054945]
Chem Commun (Camb). 2001 Oct 21;(20):2122-3 [PMID: 12240193]
Science. 2016 Jul 8;353(6295):150-4 [PMID: 27387946]
Nat Commun. 2015 Oct 09;6:8550 [PMID: 26449766]
Top Catal. 2016;59(17):1614-1627 [PMID: 28035177]
Science. 2005 Oct 14;310(5746):291-3 [PMID: 16224016]
Nat Mater. 2018 Jun;17(6):519-522 [PMID: 29760509]
Nanoscale. 2013 Jul 7;5(13):5912-8 [PMID: 23703111]
Dalton Trans. 2015 Jan 14;44(2):560-7 [PMID: 25376980]
Nat Commun. 2018 Nov 8;9(1):4703 [PMID: 30409974]
ACS Cent Sci. 2018 Sep 26;4(9):1095-1101 [PMID: 30276242]
Chem Soc Rev. 2008 Oct;37(10):2224-42 [PMID: 18818825]
Chemistry. 2015 Jan 7;21(2):885-92 [PMID: 25384333]
Nature. 2008 Jan 3;451(7174):46-8 [PMID: 18066049]
ChemCatChem. 2016 Apr 20;8(8):1531-1542 [PMID: 27812371]
Chem Rev. 2018 May 23;118(10):4981-5079 [PMID: 29658707]
Nat Mater. 2016 Mar;15(3):284-8 [PMID: 26657332]
Phys Chem Chem Phys. 2007 Jan 28;9(4):533-40 [PMID: 17216069]
J Chem Phys. 2005 Nov 1;123(17):174706 [PMID: 16375556]
ACS Catal. 2020 Jun 5;10(11):6144-6148 [PMID: 32551181]
J Am Chem Soc. 2005 Dec 28;127(51):18269-73 [PMID: 16366581]
Angew Chem Int Ed Engl. 2014 Sep 22;53(39):10525-30 [PMID: 24919780]
Angew Chem Int Ed Engl. 2015 Nov 16;54(47):13999-4002 [PMID: 26356798]
Science. 2017 Mar 24;355(6331):1296-1299 [PMID: 28336665]
J Phys Chem C Nanomater Interfaces. 2020 Oct 29;124(43):23674-23682 [PMID: 33154784]
Acc Chem Res. 2008 Aug;41(8):949-56 [PMID: 18616299]
J Am Chem Soc. 2014 Apr 23;136(16):6111-22 [PMID: 24702268]
Chem Commun (Camb). 2006 Jan 7;(1):80-2 [PMID: 16353099]
Phys Rev Lett. 2000 Jul 24;85(4):776-9 [PMID: 10991396]
Rev Sci Instrum. 2014 Sep;85(9):093102 [PMID: 25273702]
Chem Soc Rev. 2017 Jul 17;46(14):4347-4374 [PMID: 28589194]
Science. 2012 May 18;336(6083):893-7 [PMID: 22517324]
Nat Commun. 2020 Jul 14;11(1):3525 [PMID: 32665607]
Anal Chem. 2020 Apr 7;92(7):5100-5106 [PMID: 32153187]

Grants

  1. F4502/04-N16/Austrian Science Fund
  2. W1243/Austrian Science Fund
  3. I942-N17/Austrian Science Fund
  4. I1041-N28/Austrian Science Fund
  5. P 32772-N/Austrian Science Fund
  6. I 4434-N/Austrian Science Fund

Word Cloud

Similar Articles

Cited By