Time-resolved systems immunology reveals a late juncture linked to fatal COVID-19.

Can Liu, Andrew J Martins, William W Lau, Nicholas Rachmaninoff, Jinguo Chen, Luisa Imberti, Darius Mostaghimi, Danielle L Fink, Peter D Burbelo, Kerry Dobbs, Ottavia M Delmonte, Neha Bansal, Laura Failla, Alessandra Sottini, Eugenia Quiros-Roldan, Kyu Lee Han, Brian A Sellers, Foo Cheung, Rachel Sparks, Tae-Wook Chun, Susan Moir, Michail S Lionakis, NIAID COVID Consortium, COVID Clinicians, Camillo Rossi, Helen C Su, Douglas B Kuhns, Jeffrey I Cohen, Luigi D Notarangelo, John S Tsang
Author Information
  1. Can Liu: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Graduate Program in Biological Sciences, University of Maryland, College Park, MD 20742, USA.
  2. Andrew J Martins: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
  3. William W Lau: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Office of Intramural Research, CIT, NIH, Bethesda, MD 20892, USA.
  4. Nicholas Rachmaninoff: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; Graduate Program in Biological Sciences, University of Maryland, College Park, MD 20742, USA.
  5. Jinguo Chen: NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
  6. Luisa Imberti: CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia 25123, Italy.
  7. Darius Mostaghimi: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
  8. Danielle L Fink: Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA.
  9. Peter D Burbelo: National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD 20892, USA.
  10. Kerry Dobbs: Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
  11. Ottavia M Delmonte: Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
  12. Neha Bansal: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
  13. Laura Failla: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
  14. Alessandra Sottini: CREA Laboratory, Diagnostic Department, ASST Spedali Civili di Brescia, Brescia 25123, Italy.
  15. Eugenia Quiros-Roldan: Department of Infectious and Tropical Diseases, University of Brescia and ASST Spedali Civili di Brescia, Brescia 25123, Italy.
  16. Kyu Lee Han: NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
  17. Brian A Sellers: NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
  18. Foo Cheung: NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA.
  19. Rachel Sparks: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA.
  20. Tae-Wook Chun: Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA.
  21. Susan Moir: Laboratory of Immunoregulation, NIAID, NIH, Bethesda, MD 20892, USA.
  22. Michail S Lionakis: Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
  23. Camillo Rossi: ASST Spedali Civili di Brescia, Brescia 25123, Italy.
  24. Helen C Su: Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
  25. Douglas B Kuhns: Neutrophil Monitoring Laboratory, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD 20701, USA.
  26. Jeffrey I Cohen: Laboratory of Infectious Diseases, NIAID, NIH, Bethesda, MD 20892, USA.
  27. Luigi D Notarangelo: Laboratory of Clinical Immunology and Microbiology, NIAID, NIH, Bethesda, MD 20892, USA.
  28. John S Tsang: Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID, NIH, Bethesda, MD 20892, USA; NIH Center for Human Immunology, NIAID, NIH, Bethesda, MD 20892, USA. Electronic address: john.tsang@nih.gov.

Abstract

COVID-19 exhibits extensive patient-to-patient heterogeneity. To link immune response variation to disease severity and outcome over time, we longitudinally assessed circulating proteins as well as 188 surface protein markers, transcriptome, and T cell receptor sequence simultaneously in single peripheral immune cells from COVID-19 patients. Conditional-independence network analysis revealed primary correlates of disease severity, including gene expression signatures of apoptosis in plasmacytoid dendritic cells and attenuated inflammation but increased fatty acid metabolism in CD56CD16 NK cells linked positively to circulating interleukin (IL)-15. CD8 T cell activation was apparent without signs of exhaustion. Although cellular inflammation was depressed in severe patients early after hospitalization, it became elevated by days 17-23 post symptom onset, suggestive of a late wave of inflammatory responses. Furthermore, circulating protein trajectories at this time were divergent between and predictive of recovery versus fatal outcomes. Our findings stress the importance of timing in the analysis, clinical monitoring, and therapeutic intervention of COVID-19.

Keywords

References

  1. Shock. 2020 Nov;54(5):644-651 [PMID: 32826818]
  2. Cytokine. 2020 Oct;134:155190 [PMID: 32673995]
  3. JAMA. 2020 Apr 7;323(13):1239-1242 [PMID: 32091533]
  4. Proc Natl Acad Sci U S A. 2011 Jan 11;108(2):728-32 [PMID: 21187373]
  5. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  6. Am J Kidney Dis. 2009 Dec;54(6):1012-24 [PMID: 19850388]
  7. Nucleic Acids Res. 2019 Dec 2;47(21):e136 [PMID: 31501877]
  8. J Infect Dis. 2020 Jun 29;222(2):206-213 [PMID: 32427334]
  9. Cell Host Microbe. 2010 Feb 18;7(2):103-14 [PMID: 20159617]
  10. Lancet. 2020 May 30;395(10238):1695-1704 [PMID: 32401715]
  11. PLoS Pathog. 2010 Aug 19;6(8):e1001052 [PMID: 20808901]
  12. Clin Transl Immunology. 2020 Nov 13;9(11):e1204 [PMID: 33209300]
  13. Nat Immunol. 2018 Dec;19(12):1330-1340 [PMID: 30420624]
  14. Nat Commun. 2022 Jan 21;13(1):440 [PMID: 35064122]
  15. Sci Rep. 2016 Feb 10;6:20686 [PMID: 26861911]
  16. Lancet Microbe. 2020 May;1(1):e11 [PMID: 32835323]
  17. Science. 2020 Jul 31;369(6503):510-511 [PMID: 32732413]
  18. Nat Rev Immunol. 2019 May;19(5):282-290 [PMID: 30808985]
  19. Nucleic Acids Res. 2012 May;40(10):4288-97 [PMID: 22287627]
  20. Nat Immunol. 2013 Apr;14(4):404-12 [PMID: 23396170]
  21. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  22. Semin Immunol. 2020 Aug;50:101422 [PMID: 33262067]
  23. Sci Immunol. 2020 Aug 21;5(50): [PMID: 32826343]
  24. J Clin Invest. 2020 Dec 1;130(12):6290-6300 [PMID: 32784290]
  25. Nat Rev Immunol. 2020 Jul;20(7):397-398 [PMID: 32457522]
  26. J Exp Med. 1994 Oct 1;180(4):1395-403 [PMID: 7523571]
  27. Cell Death Differ. 2001 Feb;8(2):201-3 [PMID: 11313722]
  28. PLoS Genet. 2011 Aug;7(8):e1002234 [PMID: 21901105]
  29. Immunity. 2013 Oct 17;39(4):758-69 [PMID: 24035365]
  30. Cell Res. 2021 Mar;31(3):272-290 [PMID: 33473155]
  31. Cell. 2020 Nov 12;183(4):996-1012.e19 [PMID: 33010815]
  32. Nat Methods. 2017 Sep;14(9):865-868 [PMID: 28759029]
  33. Lancet. 2020 Mar 28;395(10229):1054-1062 [PMID: 32171076]
  34. Annu Rev Immunol. 2008;26:741-66 [PMID: 18173374]
  35. Blood. 2003 Jan 15;101(2):729-38 [PMID: 12393603]
  36. Bioinformatics. 2002 Nov;18(11):1462-9 [PMID: 12424117]
  37. Science. 2020 Oct 23;370(6515): [PMID: 32972995]
  38. J Exp Med. 1997 Apr 7;185(7):1185-92 [PMID: 9104805]
  39. Nat Med. 2020 Jun;26(6):845-848 [PMID: 32350462]
  40. Nat Commun. 2022 Apr 19;13(1):2099 [PMID: 35440536]
  41. Nat Immunol. 2009 Jan;10(1):116-125 [PMID: 19029902]
  42. J Allergy Clin Immunol. 2001 Sep;108(3):446-8 [PMID: 11544466]
  43. Nat Rev Immunol. 2015 Aug;15(8):471-85 [PMID: 26160613]
  44. Nucleic Acids Res. 2015 Apr 20;43(7):e47 [PMID: 25605792]
  45. Immunity. 2020 Dec 15;53(6):1296-1314.e9 [PMID: 33296687]
  46. Nat Rev Immunol. 2008 Dec;8(12):958-69 [PMID: 19029990]
  47. Blood Adv. 2020 Oct 27;4(20):5035-5039 [PMID: 33075136]
  48. Cell. 2013 Jul 3;154(1):197-212 [PMID: 23827683]
  49. J Infect. 2020 Aug;81(2):266-275 [PMID: 32473235]
  50. JAMA. 2020 Oct 6;324(13):1330-1341 [PMID: 32876694]
  51. Radiology. 2020 Jun;295(3):200463 [PMID: 32077789]
  52. J Clin Virol. 2020 Jun;127:104370 [PMID: 32344321]
  53. Nat Rev Immunol. 2020 May;20(5):271-272 [PMID: 32296135]
  54. Nat Rev Nephrol. 2018 Feb;14(2):121-137 [PMID: 29225343]
  55. Immunity. 2013 Oct 17;39(4):770-81 [PMID: 24138884]
  56. Nature. 2021 Mar;591(7848):92-98 [PMID: 33307546]
  57. JCI Insight. 2018 Feb 8;3(3): [PMID: 29415897]
  58. Nature. 2020 Aug;584(7819):115-119 [PMID: 32454513]
  59. Nat Med. 2020 Apr;26(4):618-629 [PMID: 32094927]
  60. JCI Insight. 2021 Jan 11;6(1): [PMID: 33232303]
  61. Lancet Infect Dis. 2019 Dec;19(12):e422-e436 [PMID: 31630991]
  62. Bioinformatics. 2016 Sep 15;32(18):2847-9 [PMID: 27207943]
  63. Science. 2020 Oct 23;370(6515): [PMID: 32972996]
  64. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  65. Immunity. 2007 Oct;27(4):670-84 [PMID: 17950003]
  66. MMWR Morb Mortal Wkly Rep. 2020 Apr 03;69(13):382-386 [PMID: 32240123]
  67. Nat Methods. 2018 Apr;15(4):255-261 [PMID: 29481549]
  68. Am J Transplant. 2006 Oct;6(10):2332-41 [PMID: 16889610]
  69. Front Immunol. 2014 Apr 23;5:187 [PMID: 24795729]
  70. JAMA. 2020 Aug 18;324(7):663-673 [PMID: 32706371]
  71. JAMA. 2020 May 26;323(20):2085-2086 [PMID: 32293646]
  72. Nature. 2020 Aug;584(7821):430-436 [PMID: 32640463]
  73. Int J Biol Sci. 2020 Jul 9;16(14):2479-2489 [PMID: 32792851]
  74. Crit Care Med. 1996 Jul;24(7):1125-8 [PMID: 8674323]
  75. Nat Immunol. 2014 Feb;15(2):195-204 [PMID: 24336226]
  76. Clin Microbiol Infect. 2020 Dec;26(12):1622-1629 [PMID: 32711058]
  77. Clin Microbiol Rev. 2013 Jan;26(1):2-18 [PMID: 23297256]
  78. Genome Biol. 2014 Feb 03;15(2):R29 [PMID: 24485249]
  79. medRxiv. 2021 Feb 01;: [PMID: 33330894]
  80. Proc Natl Acad Sci U S A. 2005 Oct 25;102(43):15545-50 [PMID: 16199517]
  81. Nat Med. 2020 Oct;26(10):1623-1635 [PMID: 32807934]
  82. Cell. 2020 Dec 10;183(6):1479-1495.e20 [PMID: 33171100]
  83. Nat Med. 2020 Jul;26(7):1070-1076 [PMID: 32514174]
  84. J Mach Learn Res. 2012 Apr;13:1059-1062 [PMID: 26834510]
  85. Inflamm Res. 2020 Aug;69(8):757-763 [PMID: 32468151]
  86. Immunity. 2014 Feb 20;40(2):274-88 [PMID: 24530056]
  87. PLoS One. 2013;8(1):e52198 [PMID: 23326326]
  88. Nat Commun. 2020 Oct 8;11(1):5086 [PMID: 33033248]
  89. Proc Natl Acad Sci U S A. 2013 Aug 27;110(35):14336-41 [PMID: 23940348]
  90. PLoS Pathog. 2020 Feb 26;16(2):e1008334 [PMID: 32101596]
  91. Sci Immunol. 2020 Jul 15;5(49): [PMID: 32669287]
  92. BMC Bioinformatics. 2013 Jan 16;14:7 [PMID: 23323831]
  93. Blood. 2014 Dec 11;124(25):3719-29 [PMID: 25331115]
  94. Nat Biotechnol. 2018 Jan;36(1):89-94 [PMID: 29227470]
  95. Nat Rev Immunol. 2014 Jan;14(1):36-49 [PMID: 24362405]
  96. Proc Natl Acad Sci U S A. 2002 Apr 30;99(9):6181-6 [PMID: 11972057]
  97. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  98. Kidney Int. 2020 Jul;98(1):209-218 [PMID: 32416116]
  99. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  100. Genome Biol. 2018 Dec 19;19(1):224 [PMID: 30567574]
  101. Cell. 2020 Sep 17;182(6):1419-1440.e23 [PMID: 32810438]
  102. J Exp Med. 2005 Sep 5;202(5):687-96 [PMID: 16147979]
  103. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  104. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  105. Cell Rep. 2021 Mar 30;34(13):108943 [PMID: 33789116]
  106. J Exp Med. 2019 Feb 4;216(2):384-406 [PMID: 30674564]
  107. Nature. 2004 Dec 16;432(7019):917-21 [PMID: 15531878]
  108. Nature. 2013 Apr 25;496(7446):445-55 [PMID: 23619691]
  109. PLoS One. 2012;7(7):e41169 [PMID: 22815957]
  110. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  111. Immunity. 2021 Jan 12;54(1):44-52.e3 [PMID: 33338412]
  112. Nat Immunol. 2018 Jun;19(6):625-635 [PMID: 29777224]
  113. Cytometry A. 2018 Dec;93(12):1189-1196 [PMID: 30551257]
  114. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  115. J Biol Chem. 2017 Apr 28;292(17):7163-7172 [PMID: 28283576]
  116. J Clin Immunol. 2020 Oct;40(7):970-973 [PMID: 32594342]
  117. BMJ. 2020 Apr 21;369:m1443 [PMID: 32317267]
  118. J Exp Med. 2011 Nov 21;208(12):2367-74 [PMID: 22084408]
  119. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  120. Nat Med. 2020 Oct;26(10):1636-1643 [PMID: 32839624]
  121. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  122. Cytokine. 2000 Sep;12(9):1312-21 [PMID: 10975989]
  123. Nat Commun. 2018 Nov 28;9(1):5037 [PMID: 30487586]
  124. Cell Mol Immunol. 2021 Mar;18(3):604-612 [PMID: 33060840]
  125. Blood. 2010 Dec 9;116(24):5347-56 [PMID: 20739658]
  126. Nat Immunol. 2020 Sep;21(9):1107-1118 [PMID: 32788748]
  127. Annu Rev Immunol. 2008;26:293-316 [PMID: 18045026]
  128. PLoS Pathog. 2015 Oct 20;11(10):e1005177 [PMID: 26485519]

Grants

  1. HHSN261200800001C/NCI NIH HHS
  2. HHSN261200800001E/NCI NIH HHS

MeSH Term

Adult
Aged
Aged, 80 and over
Biomarkers
COVID-19
Case-Control Studies
Cytokines
Dendritic Cells
Female
Gene Expression
Humans
Killer Cells, Natural
Longitudinal Studies
Male
Middle Aged
Severity of Illness Index
Transcriptome
Young Adult

Chemicals

Biomarkers
Cytokines

Word Cloud

Similar Articles

Cited By