Comprehensive Analysis of Expression Regulation for RNA m6A Regulators With Clinical Significance in Human Cancers.

Xiaonan Liu, Pei Wang, Xufei Teng, Zhang Zhang, Shuhui Song
Author Information
  1. Xiaonan Liu: National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.
  2. Pei Wang: National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.
  3. Xufei Teng: National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.
  4. Zhang Zhang: National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.
  5. Shuhui Song: National Genomics Data Center, Beijing Institute of Genomics (China National Center for Bioinformation), Chinese Academy of Sciences, Beijing, China.

Abstract

BACKGROUND: N6-methyladenosine (m6A), the most abundant chemical modification on eukaryotic messenger RNA (mRNA), is modulated by three class of regulators namely "writers," "erasers," and "readers." Increasing studies have shown that aberrant expression of m6A regulators plays broad roles in tumorigenesis and progression. However, it is largely unknown regarding the expression regulation for RNA m6A regulators in human cancers.
RESULTS: Here we characterized the expression profiles of RNA m6A regulators in 13 cancer types with The Cancer Genome Atlas (TCGA) data. We showed that , , and were down-regulated in most cancers, whereas and were up-regulated in 12 cancer types except for thyroid carcinoma (THCA). Survival analysis further revealed that low expression of several m6A regulators displayed longer overall survival times. Then, we analyzed microRNA (miRNA)-regulated and DNA methylation-regulated expression changes of m6A regulators in pan-cancer. In total, we identified 158 miRNAs and 58 DNA methylation probes (DMPs) involved in expression regulation for RNA m6A regulators. Furthermore, we assessed the survival significance of those regulatory pairs. Among them, 10 miRNAs and 7 DMPs may promote cancer initiation and progression; conversely, 3 miRNA/mRNA pairs in kidney renal clear cell carcinoma (KIRC) may exert tumor-suppressor function. These findings are indicative of their potential prognostic values. Finally, we validated two of those miRNA/mRNA pairs (hsa-miR-1307-3p/ and hsa-miR-204-5p/) that could serve a critical role for potential clinical application in KIRC patients.
CONCLUSIONS: Our findings highlighted the importance of upstream regulation (miRNA and DNA methylation) governing m6A regulators' expression in pan-cancer. As a result, we identified several informative regulatory pairs for prognostic stratification. Thus, our study provides new insights into molecular mechanisms of m6A modification in human cancers.

Keywords

References

  1. Genes Dev. 2018 Mar 1;32(5-6):415-429 [PMID: 29535189]
  2. Nucleic Acids Res. 2018 Jun 1;46(10):5195-5208 [PMID: 29506078]
  3. Front Genet. 2020 Mar 31;11:294 [PMID: 32296463]
  4. Bioinformatics. 2010 Apr 1;26(7):976-8 [PMID: 20179076]
  5. Aging (Albany NY). 2019 Mar 15;11(6):1633-1647 [PMID: 30877265]
  6. Drug Des Devel Ther. 2015 Feb 18;9:1103-75 [PMID: 25733820]
  7. Onco Targets Ther. 2018 Apr 18;11:2205-2216 [PMID: 29713189]
  8. Int J Mol Med. 2018 Apr;41(4):2429-2433 [PMID: 29393367]
  9. Am J Physiol Gastrointest Liver Physiol. 2014 Jan 1;306(1):G48-58 [PMID: 24177031]
  10. Sci Rep. 2019 Feb 13;9(1):1903 [PMID: 30760837]
  11. Cell Res. 2017 Mar;27(3):444-447 [PMID: 28106076]
  12. J Biol Chem. 2017 Mar 3;292(9):3614-3623 [PMID: 28104805]
  13. Pathol Oncol Res. 2019 Apr;25(2):527-533 [PMID: 30220021]
  14. Aging (Albany NY). 2019 Feb 27;11(4):1204-1225 [PMID: 30810537]
  15. Exp Mol Pathol. 2018 Dec;105(3):404-410 [PMID: 30423315]
  16. Mol Cancer. 2020 Aug 25;19(1):130 [PMID: 32843065]
  17. Mol Med Rep. 2020 Feb;21(2):744-758 [PMID: 31974616]
  18. Aging (Albany NY). 2020 Sep 9;12(17):17022-17037 [PMID: 32903217]
  19. Nat Cell Biol. 2018 Sep;20(9):1074-1083 [PMID: 30154548]
  20. Nat Protoc. 2009;4(1):44-57 [PMID: 19131956]
  21. Genomics Proteomics Bioinformatics. 2013 Feb;11(1):72-5 [PMID: 23434047]
  22. Cancer Inform. 2019 Feb 11;18:1176935119828776 [PMID: 30792573]
  23. Lancet. 2009 Mar 28;373(9669):1119-32 [PMID: 19269025]
  24. Cell. 2015 Jun 4;161(6):1388-99 [PMID: 26046440]
  25. Mol Cancer. 2020 Mar 12;19(1):53 [PMID: 32164750]
  26. Oncogene. 2019 May;38(19):3667-3680 [PMID: 30659266]
  27. Sci China Life Sci. 2020 Aug;63(8):1201-1212 [PMID: 32170623]
  28. Gynecol Oncol. 2018 Nov;151(2):356-365 [PMID: 30249526]
  29. Oncotarget. 2016 Oct 18;7(42):68397-68411 [PMID: 27588393]
  30. Oncol Res. 2017 Aug 7;25(7):1117-1127 [PMID: 28244848]
  31. Methods. 2014 Oct 1;69(3):274-81 [PMID: 24979058]
  32. Biomed Res Int. 2020 Oct 29;2020:6037434 [PMID: 33178832]
  33. Nucleic Acids Res. 2020 Jan 8;48(D1):D789-D796 [PMID: 31665503]
  34. Nature. 2015 Oct 22;526(7574):591-4 [PMID: 26458103]
  35. Pharmacol Rev. 2020 Jul;72(3):639-667 [PMID: 32554488]
  36. Nat Med. 2017 Nov;23(11):1369-1376 [PMID: 28920958]
  37. Cancers (Basel). 2019 Oct 09;11(10): [PMID: 31600992]
  38. Mol Med Rep. 2017 Nov;16(5):7124-7130 [PMID: 28901413]
  39. Cancer Lett. 2018 Feb 28;415:11-19 [PMID: 29174803]
  40. Cell. 2015 Sep 10;162(6):1299-308 [PMID: 26321680]
  41. RNA. 1997 Nov;3(11):1233-47 [PMID: 9409616]
  42. World J Surg Oncol. 2019 Dec 16;17(1):221 [PMID: 31842912]
  43. Genome Med. 2018 May 30;10(1):42 [PMID: 29848370]
  44. Nat Chem Biol. 2014 Feb;10(2):93-5 [PMID: 24316715]
  45. Nature. 2009 Nov 5;462(7269):108-12 [PMID: 19847166]
  46. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  47. Cell Discov. 2018 Feb 27;4:10 [PMID: 29507755]
  48. Nat Chem Biol. 2011 Oct 16;7(12):885-7 [PMID: 22002720]
  49. Nucleic Acids Res. 2019 Jan 10;47(1):375-390 [PMID: 30371874]
  50. Nat Immunol. 2019 Feb;20(2):173-182 [PMID: 30559377]
  51. J Exp Clin Cancer Res. 2020 Sep 29;39(1):203 [PMID: 32993738]
  52. Cell Rep. 2017 Jan 3;18(1):248-262 [PMID: 28052254]
  53. J Cell Physiol. 2019 Jun;234(6):8908-8917 [PMID: 30317616]
  54. Mediators Inflamm. 2015;2015:121378 [PMID: 26696750]
  55. Cell Res. 2017 Mar;27(3):315-328 [PMID: 28106072]
  56. Mol Cancer. 2019 Sep 14;18(1):137 [PMID: 31521193]
  57. Mol Cancer. 2019 Dec 4;18(1):176 [PMID: 31801551]
  58. Cell Stem Cell. 2014 Dec 4;15(6):707-19 [PMID: 25456834]
  59. Plant Cell. 2008 May;20(5):1278-88 [PMID: 18505803]
  60. Mol Cell. 2013 Jan 10;49(1):18-29 [PMID: 23177736]
  61. Mol Cancer. 2019 Aug 22;18(1):127 [PMID: 31438961]
  62. Genome Biol. 2018 May 31;19(1):68 [PMID: 29855379]
  63. Genes Dev. 2019 Aug 1;33(15-16):1048-1068 [PMID: 31221665]
  64. Leuk Res. 2020 Feb;89:106296 [PMID: 31927137]
  65. Brief Bioinform. 2017 Sep 1;18(5):761-773 [PMID: 27436122]
  66. Med Oral Patol Oral Cir Bucal. 2020 Jul 1;25(4):e481-e487 [PMID: 32134893]
  67. Front Oncol. 2019 May 03;9:332 [PMID: 31131257]
  68. Mol Cancer. 2019 Jun 24;18(1):112 [PMID: 31230592]
  69. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2047-56 [PMID: 27001847]
  70. Nucleic Acids Res. 2014 Jan;42(Database issue):D78-85 [PMID: 24304892]
  71. Nucleic Acids Res. 2020 Jul 2;48(W1):W521-W528 [PMID: 32374865]
  72. Clin Cancer Res. 2017 Jan 1;23(1):311-319 [PMID: 27358489]
  73. Nature. 2016 Sep 15;537(7620):369-373 [PMID: 27602518]
  74. Nucleic Acids Res. 2020 Mar 18;48(5):2287-2302 [PMID: 32002550]
  75. Elife. 2015 Aug 12;4: [PMID: 26267216]

Word Cloud

Similar Articles

Cited By