Single-cell longitudinal analysis of SARS-CoV-2 infection in human airway epithelium identifies target cells, alterations in gene expression, and cell state changes.

Neal G Ravindra, Mia Madel Alfajaro, Victor Gasque, Nicholas C Huston, Han Wan, Klara Szigeti-Buck, Yuki Yasumoto, Allison M Greaney, Victoria Habet, Ryan D Chow, Jennifer S Chen, Jin Wei, Renata B Filler, Bao Wang, Guilin Wang, Laura E Niklason, Ruth R Montgomery, Stephanie C Eisenbarth, Sidi Chen, Adam Williams, Akiko Iwasaki, Tamas L Horvath, Ellen F Foxman, Richard W Pierce, Anna Marie Pyle, David van Dijk, Craig B Wilen
Author Information
  1. Neal G Ravindra: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America. ORCID
  2. Mia Madel Alfajaro: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America.
  3. Victor Gasque: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America. ORCID
  4. Nicholas C Huston: Department of Molecular Biophysics & Biochemistry, Yale School of Medicine, New Haven, Connecticut, United States of America. ORCID
  5. Han Wan: Department of Molecular, Cellular, and Developmental Biology, Yale School of Medicine, New Haven, Connecticut, United States of America.
  6. Klara Szigeti-Buck: Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America.
  7. Yuki Yasumoto: Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America. ORCID
  8. Allison M Greaney: Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America. ORCID
  9. Victoria Habet: Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America.
  10. Ryan D Chow: Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America. ORCID
  11. Jennifer S Chen: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America. ORCID
  12. Jin Wei: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America. ORCID
  13. Renata B Filler: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America.
  14. Bao Wang: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America. ORCID
  15. Guilin Wang: Yale Center for Genome Analysis, Yale School of Medicine, New Haven, Connecticut, United States of America.
  16. Laura E Niklason: Department of Biomedical Engineering, Yale University, New Haven, Connecticut, United States of America.
  17. Ruth R Montgomery: Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America. ORCID
  18. Stephanie C Eisenbarth: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America.
  19. Sidi Chen: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America.
  20. Adam Williams: The Jackson Laboratory, Farmington, Connecticut, United States of America.
  21. Akiko Iwasaki: Department of Immunobiology, Yale University, New Haven, Connecticut, United States of America.
  22. Tamas L Horvath: Department of Comparative Medicine, Yale School of Medicine, New Haven, Connecticut, United States of America.
  23. Ellen F Foxman: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America. ORCID
  24. Richard W Pierce: Department of Pediatrics, Yale School of Medicine, New Haven, Connecticut, United States of America.
  25. Anna Marie Pyle: Department of Genetics, Yale School of Medicine, New Haven, Connecticut, United States of America.
  26. David van Dijk: Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School Medicine, New Haven, Connecticut, United States of America. ORCID
  27. Craig B Wilen: Department of Laboratory Medicine, Yale University, New Haven, Connecticut, United States of America. ORCID

Abstract

There are currently limited Food and Drug Administration (FDA)-approved drugs and vaccines for the treatment or prevention of Coronavirus Disease 2019 (COVID-19). Enhanced understanding of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection and pathogenesis is critical for the development of therapeutics. To provide insight into viral replication, cell tropism, and host-viral interactions of SARS-CoV-2, we performed single-cell (sc) RNA sequencing (RNA-seq) of experimentally infected human bronchial epithelial cells (HBECs) in air-liquid interface (ALI) cultures over a time course. This revealed novel polyadenylated viral transcripts and highlighted ciliated cells as a major target at the onset of infection, which we confirmed by electron and immunofluorescence microscopy. Over the course of infection, the cell tropism of SARS-CoV-2 expands to other epithelial cell types including basal and club cells. Infection induces cell-intrinsic expression of type I and type III interferons (IFNs) and interleukin (IL)-6 but not IL-1. This results in expression of interferon-stimulated genes (ISGs) in both infected and bystander cells. This provides a detailed characterization of genes, cell types, and cell state changes associated with SARS-CoV-2 infection in the human airway.

References

  1. Nature. 2020 Nov;587(7835):619-625 [PMID: 33208946]
  2. J Virol. 2016 Oct 28;90(22):10145-10159 [PMID: 27581979]
  3. Mol Cell. 2020 May 21;78(4):779-784.e5 [PMID: 32362314]
  4. Dev Cell. 2020 Jun 8;53(5):514-529.e3 [PMID: 32425701]
  5. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  6. J Virol. 2010 Dec;84(24):12658-64 [PMID: 20926566]
  7. J Virol. 2019 May 29;93(12): [PMID: 30918070]
  8. Ann Intern Med. 2020 May 05;172(9):577-582 [PMID: 32150748]
  9. Nat Biotechnol. 2021 May;39(5):619-629 [PMID: 33558698]
  10. J Mol Biol. 2020 May 1;432(10):3338-3352 [PMID: 32259542]
  11. Lancet Respir Med. 2020 Jul;8(7):687-695 [PMID: 32386571]
  12. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  13. Nature. 2020 Mar;579(7798):270-273 [PMID: 32015507]
  14. Lancet Respir Med. 2020 Apr;8(4):420-422 [PMID: 32085846]
  15. Pharmaceut Med. 2020 Aug;34(4):223-231 [PMID: 32535732]
  16. Lancet. 2020 Feb 15;395(10223):470-473 [PMID: 31986257]
  17. Cell. 2020 May 14;181(4):914-921.e10 [PMID: 32330414]
  18. Nat Med. 2020 Jun;26(6):842-844 [PMID: 32398875]
  19. Cells. 2020 Sep 13;9(9): [PMID: 32933106]
  20. Methods. 2018 Aug 1;145:25-32 [PMID: 29702224]
  21. N Engl J Med. 2010 Dec 2;363(23):2233-47 [PMID: 21121836]
  22. Cell. 2020 Apr 16;181(2):281-292.e6 [PMID: 32155444]
  23. Sci Immunol. 2020 May 13;5(47): [PMID: 32404436]
  24. Adv Exp Med Biol. 1998;440:215-9 [PMID: 9782283]
  25. Nat Commun. 2020 Oct 28;11(1):5453 [PMID: 33116139]
  26. Development. 2019 Oct 23;146(20): [PMID: 31558434]
  27. Nature. 2003 Nov 27;426(6965):450-4 [PMID: 14647384]
  28. Sci Rep. 2015 Nov 26;5:17155 [PMID: 26607834]
  29. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  30. Nat Biotechnol. 2019 Dec;37(12):1482-1492 [PMID: 31796933]
  31. Proc Natl Acad Sci U S A. 2005 May 31;102(22):7988-93 [PMID: 15897467]
  32. Cell. 2020 Jul 23;182(2):429-446.e14 [PMID: 32526206]
  33. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  34. Cell Stem Cell. 2016 Aug 4;19(2):217-231 [PMID: 27320041]
  35. J Virol. 2011 May;85(9):4122-34 [PMID: 21325420]
  36. Proc Natl Acad Sci U S A. 2005 Aug 16;102(33):11876-81 [PMID: 16081529]
  37. Genes Dev. 2018 Jul 1;32(13-14):915-928 [PMID: 29945888]
  38. Respir Res. 2016 Jul 16;17(1):83 [PMID: 27423691]
  39. J Clin Invest. 2020 May 1;130(5):2202-2205 [PMID: 32217834]
  40. Nature. 2018 Aug;560(7718):377-381 [PMID: 30069046]
  41. Cell Host Microbe. 2020 May 13;27(5):841-848.e3 [PMID: 32289263]
  42. Biochem Biophys Res Commun. 2020 May 21;526(1):135-140 [PMID: 32199615]
  43. Proc Natl Acad Sci U S A. 2020 May 26;117(21):11727-11734 [PMID: 32376634]
  44. J Clin Med. 2020 Feb 17;9(2): [PMID: 32079150]
  45. Trends Microbiol. 2016 Jun;24(6):490-502 [PMID: 27012512]
  46. Am J Physiol Lung Cell Mol Physiol. 2004 Apr;286(4):L650-7 [PMID: 12818891]
  47. J Allergy Clin Immunol. 2020 Jul;146(1):128-136.e4 [PMID: 32425269]
  48. Mol Syst Biol. 2020 Jul;16(7):e9841 [PMID: 32715628]
  49. J Virol. 2006 Aug;80(16):7918-28 [PMID: 16873249]
  50. PLoS One. 2016 Apr 21;11(4):e0153985 [PMID: 27101006]
  51. Antiviral Res. 2020 Apr;176:104742 [PMID: 32057769]
  52. Mol Syst Biol. 2020 Jul;16(7):e9610 [PMID: 32715618]
  53. Nat Rev Microbiol. 2016 Aug;14(8):523-34 [PMID: 27344959]
  54. Nat Rev Microbiol. 2019 Mar;17(3):181-192 [PMID: 30531947]
  55. Front Immunol. 2020 May 01;11:827 [PMID: 32425950]
  56. J Virol. 2019 Mar 5;93(6): [PMID: 30626688]
  57. Nat Commun. 2020 Mar 27;11(1):1620 [PMID: 32221306]
  58. Front Med. 2020 Apr;14(2):185-192 [PMID: 32170560]
  59. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  60. Nucleic Acids Res. 2019 Jan 8;47(D1):D419-D426 [PMID: 30407594]
  61. Bioinformatics. 2020 Feb 1;36(3):964-965 [PMID: 31400197]
  62. Sci Rep. 2017 Aug 15;7(1):8182 [PMID: 28811631]
  63. PLoS One. 2016 Mar 23;11(3):e0151859 [PMID: 27008164]
  64. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  65. Lancet. 2020 Feb 15;395(10223):507-513 [PMID: 32007143]
  66. Proc Natl Acad Sci U S A. 2014 Oct 14;111(41):14788-93 [PMID: 25267614]
  67. J Virol. 1992 Oct;66(10):6117-24 [PMID: 1326662]
  68. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  69. Cell Host Microbe. 2008 Dec 11;4(6):579-91 [PMID: 19064258]
  70. PLoS Biol. 2021 Mar 29;19(3):e3001158 [PMID: 33780434]
  71. Proc Natl Acad Sci U S A. 2014 Apr 29;111(17):E1723-30 [PMID: 24706852]
  72. Nat Rev Immunol. 2020 Jun;20(6):363-374 [PMID: 32346093]
  73. Respir Res. 2019 Aug 23;20(1):196 [PMID: 31443657]
  74. Nature. 2018 Aug;560(7718):319-324 [PMID: 30069044]
  75. Respir Res. 2017 May 4;18(1):84 [PMID: 28472984]
  76. Life Sci Alliance. 2020 Jul 23;3(9): [PMID: 32703818]
  77. Nat Biotechnol. 2015 May;33(5):495-502 [PMID: 25867923]

Grants

  1. T32 AI055403/NIAID NIH HHS
  2. /Wellcome Trust
  3. UL1 TR001863/NCATS NIH HHS
  4. /Howard Hughes Medical Institute
  5. R21 AI133440/NIAID NIH HHS
  6. K08 AI119139/NIAID NIH HHS
  7. R01 HL138540/NHLBI NIH HHS
  8. K08 AI128043/NIAID NIH HHS
  9. K08 HL136898/NHLBI NIH HHS
  10. F30 CA250249/NCI NIH HHS
  11. U19 AI089992/NIAID NIH HHS
  12. R01 AI141609/NIAID NIH HHS

MeSH Term

Adult
Bronchi
COVID-19
Cells, Cultured
Epithelium
Gene Expression
Humans
Immunity, Innate
Longitudinal Studies
SARS-CoV-2
Single-Cell Analysis
Transcriptome
Viral Tropism