B cell-specific XIST complex enforces X-inactivation and restrains atypical B cells.

Bingfei Yu, Yanyan Qi, Rui Li, Quanming Shi, Ansuman T Satpathy, Howard Y Chang
Author Information
  1. Bingfei Yu: Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
  2. Yanyan Qi: Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
  3. Rui Li: Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
  4. Quanming Shi: Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA.
  5. Ansuman T Satpathy: Department of Pathology, Stanford University, Stanford, CA 94305, USA.
  6. Howard Y Chang: Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA. Electronic address: howchang@stanford.edu.

Abstract

The long non-coding RNA (lncRNA) XIST establishes X chromosome inactivation (XCI) in female cells in early development and thereafter is thought to be largely dispensable. Here, we show XIST is continually required in adult human B cells to silence a subset of X-linked immune genes such as TLR7. XIST-dependent genes lack promoter DNA methylation and require continual XIST-dependent histone deacetylation. XIST RNA-directed proteomics and CRISPRi screen reveal distinctive somatic cell-type-specific XIST complexes and identify TRIM28 that mediates Pol II pausing at promoters of X-linked genes in B cells. Single-cell transcriptome data of female patients with either systemic lupus erythematosus or COVID-19 infection revealed XIST dysregulation, reflected by escape of XIST-dependent genes, in CD11c atypical memory B cells (ABCs). XIST inactivation with TLR7 agonism suffices to promote isotype-switched ABCs. These results indicate cell-type-specific diversification and function for lncRNA-protein complexes and suggest expanded roles for XIST in sex-differences in biology and medicine.

Keywords

References

  1. J Biomed Sci. 2017 Aug 29;24(1):63 [PMID: 28851455]
  2. Genome Biol. 2014;15(12):550 [PMID: 25516281]
  3. Elife. 2019 Jan 17;8: [PMID: 30652970]
  4. Nat Methods. 2013 Dec;10(12):1213-8 [PMID: 24097267]
  5. Proc Natl Acad Sci U S A. 2017 Oct 3;114(40):10654-10659 [PMID: 28923964]
  6. Proc Natl Acad Sci U S A. 2019 Dec 10;116(50):25222-25228 [PMID: 31754025]
  7. Annu Rev Genet. 1983;17:155-90 [PMID: 6364959]
  8. Bioinformatics. 2015 Jan 15;31(2):166-9 [PMID: 25260700]
  9. Nature. 2017 Oct 11;550(7675):244-248 [PMID: 29022598]
  10. Genome Biol. 2016 Feb 16;17:28 [PMID: 26883116]
  11. Nature. 1994 Mar 10;368(6467):154-6 [PMID: 8139659]
  12. Proc Natl Acad Sci U S A. 2020 Feb 25;117(8):4262-4272 [PMID: 32041873]
  13. Elife. 2020 May 07;9: [PMID: 32379046]
  14. Philos Trans R Soc Lond B Biol Sci. 2017 Nov 5;372(1733): [PMID: 28947655]
  15. J Exp Med. 2022 Feb 7;219(2): [PMID: 35015026]
  16. Nat Genet. 1999 Aug;22(4):323-4 [PMID: 10431231]
  17. Dev Cell. 2010 Sep 14;19(3):469-76 [PMID: 20833368]
  18. Nat Immunol. 2019 Jul;20(7):928-942 [PMID: 31061532]
  19. Proc Natl Acad Sci U S A. 2006 Jun 27;103(26):9970-5 [PMID: 16777955]
  20. Development. 2009 Jan;136(1):139-46 [PMID: 19036803]
  21. Elife. 2017 Jan 16;6: [PMID: 28079019]
  22. J Biol Chem. 2011 Jul 29;286(30):26267-76 [PMID: 21652716]
  23. Sci Immunol. 2018 Jan 26;3(19): [PMID: 29374079]
  24. Blood. 2011 Aug 4;118(5):1294-304 [PMID: 21562046]
  25. Curr Opin Genet Dev. 2020 Apr;61:53-61 [PMID: 32403014]
  26. Genes Dev. 2016 Aug 1;30(15):1747-60 [PMID: 27542829]
  27. Nature. 2015 May 14;521(7551):232-6 [PMID: 25915022]
  28. Sci Immunol. 2020 Jul 10;5(49): [PMID: 32651212]
  29. Genes Dev. 2002 Apr 15;16(8):919-32 [PMID: 11959841]
  30. Cell. 2019 Jan 10;176(1-2):182-197.e23 [PMID: 30595450]
  31. Nat Med. 2020 May;26(5):693-698 [PMID: 32405063]
  32. Annu Rev Immunol. 2020 Apr 26;38:315-340 [PMID: 31986068]
  33. Nat Genet. 2006 May;38(5):500-1 [PMID: 16642009]
  34. Philos Trans R Soc Lond B Biol Sci. 2017 Nov 5;372(1733): [PMID: 28947654]
  35. Nat Genet. 2014 Dec;46(12):1311-20 [PMID: 25383968]
  36. Nature. 1996 Jan 11;379(6561):131-7 [PMID: 8538762]
  37. Genome Biol. 2018 Feb 6;19(1):15 [PMID: 29409532]
  38. Am J Hum Genet. 1962 Jun;14:135-48 [PMID: 14467629]
  39. J Cell Biol. 2001 May 14;153(4):773-84 [PMID: 11352938]
  40. Blood. 2011 Aug 4;118(5):1305-15 [PMID: 21543762]
  41. Cell Rep. 2015 Jul 28;12(4):562-72 [PMID: 26190105]
  42. Science. 2015 Jul 17;349(6245): [PMID: 26089354]
  43. Nature. 2020 Nov;587(7832):145-151 [PMID: 32908311]
  44. Cell. 2013 Feb 14;152(4):727-42 [PMID: 23415223]
  45. Nat Immunol. 2020 Dec;21(12):1506-1516 [PMID: 33028979]
  46. Cell Immunol. 2017 Nov;321:40-45 [PMID: 28756897]
  47. Nature. 2020 May;581(7808):316-322 [PMID: 32433612]
  48. Cell. 2020 Mar 19;180(6):1081-1097.e24 [PMID: 32142650]
  49. Epigenetics Chromatin. 2018 Aug 31;11(1):50 [PMID: 30170615]
  50. Nature. 2020 Jan;577(7790):416-420 [PMID: 31875850]
  51. Genes Dev. 2001 Feb 15;15(4):428-43 [PMID: 11230151]
  52. Cell Rep. 2015 Jul 28;12(4):554-61 [PMID: 26190100]
  53. Nat Rev Immunol. 2016 Oct;16(10):626-38 [PMID: 27546235]
  54. Nature. 2012 Sep 6;489(7414):57-74 [PMID: 22955616]
  55. Nature. 2020 Aug;584(7821):430-436 [PMID: 32640463]
  56. Immunity. 2006 Sep;25(3):417-28 [PMID: 16973389]
  57. Science. 2020 Sep 11;369(6509): [PMID: 32913072]
  58. Genome Biol. 2008;9(9):R137 [PMID: 18798982]
  59. Proc Natl Acad Sci U S A. 2018 Dec 11;115(50):12565-12572 [PMID: 30455304]
  60. Nat Methods. 2012 Mar 04;9(4):357-9 [PMID: 22388286]
  61. JCI Insight. 2019 Apr 4;4(7): [PMID: 30944248]
  62. F1000Res. 2016 Jun 23;5:1479 [PMID: 27429743]
  63. Cell. 2019 Jan 10;176(1-2):361-376.e17 [PMID: 30580963]
  64. Cell. 2015 Apr 9;161(2):404-16 [PMID: 25843628]
  65. Elife. 2019 May 15;8: [PMID: 31090539]
  66. Mol Cell. 2010 May 28;38(4):576-89 [PMID: 20513432]
  67. Curr Protoc Bioinformatics. 2015 Sep 03;51:11.14.1-11.14.19 [PMID: 26334920]
  68. Cell Rep. 2021 Jan 5;34(1):108590 [PMID: 33357411]
  69. Immunol Res. 2012 Sep;53(1-3):58-77 [PMID: 22434514]
  70. Nat Rev Immunol. 2010 Aug;10(8):594-604 [PMID: 20651746]
  71. Immunity. 2018 Oct 16;49(4):725-739.e6 [PMID: 30314758]
  72. Genome Res. 2014 Dec;24(12):1963-76 [PMID: 25319995]
  73. Nature. 2020 Feb;578(7795):455-460 [PMID: 32025035]
  74. Proc Natl Acad Sci U S A. 2021 Jun 15;118(24): [PMID: 34103397]
  75. Nature. 2020 Dec;588(7837):315-320 [PMID: 32846427]
  76. Proc Natl Acad Sci U S A. 2016 Apr 5;113(14):E2029-38 [PMID: 27001848]
  77. PLoS Genet. 2019 Sep 19;15(9):e1008333 [PMID: 31537017]
  78. Proc Natl Acad Sci U S A. 2014 Sep 2;111(35):12591-8 [PMID: 25136103]
  79. J Immunol. 2015 Sep 1;195(5):1933-7 [PMID: 26297793]
  80. Nat Immunol. 2019 Jul;20(7):902-914 [PMID: 31209404]
  81. Bioinformatics. 2009 Aug 15;25(16):2078-9 [PMID: 19505943]
  82. Science. 2020 Sep 4;369(6508):1210-1220 [PMID: 32788292]
  83. Cell. 2016 May 19;165(5):1267-1279 [PMID: 27180905]
  84. Bioinformatics. 2010 Mar 15;26(6):841-2 [PMID: 20110278]

Grants

  1. K08 CA230188/NCI NIH HHS
  2. P50 HG007735/NHGRI NIH HHS
  3. RM1 HG007735/NHGRI NIH HHS
  4. U54 CA260517/NCI NIH HHS

MeSH Term

B-Lymphocytes
COVID-19
Cell Line
DNA Methylation
Female
Gene Silencing
Humans
Lupus Erythematosus, Systemic
RNA, Long Noncoding
Toll-Like Receptor 7
X Chromosome Inactivation

Chemicals

RNA, Long Noncoding
TLR7 protein, human
Toll-Like Receptor 7
XIST non-coding RNA