A single-cell resolution developmental atlas of hematopoietic stem and progenitor cell expansion in zebrafish.

Jun Xia, Zhixin Kang, Yuanyuan Xue, Yanyan Ding, Suwei Gao, Yifan Zhang, Peng Lv, Xinyu Wang, Dongyuan Ma, Lu Wang, Jing-Dong J Han, Feng Liu
Author Information
  1. Jun Xia: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  2. Zhixin Kang: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  3. Yuanyuan Xue: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China. ORCID
  4. Yanyan Ding: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  5. Suwei Gao: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  6. Yifan Zhang: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China. ORCID
  7. Peng Lv: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  8. Xinyu Wang: College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China. ORCID
  9. Dongyuan Ma: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China.
  10. Lu Wang: State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, 300020 Tianjin, China. ORCID
  11. Jing-Dong J Han: College of Life Sciences, University of Chinese Academy of Sciences, 100049 Beijing, China. ORCID
  12. Feng Liu: State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, 100101 Beijing, China; liuf@ioz.ac.cn. ORCID

Abstract

During vertebrate embryogenesis, fetal hematopoietic stem and progenitor cells (HSPCs) exhibit expansion and differentiation properties in a supportive hematopoietic niche. To profile the developmental landscape of fetal HSPCs and their local niche, here, using single-cell RNA-sequencing, we deciphered a dynamic atlas covering 28,777 cells and 9 major cell types (23 clusters) of zebrafish caudal hematopoietic tissue (CHT). We characterized four heterogeneous HSPCs with distinct lineage priming and metabolic gene signatures. Furthermore, we investigated the regulatory mechanism of CHT niche components for HSPC development, with a focus on the transcription factors and ligand-receptor networks involved in HSPC expansion. Importantly, we identified an endothelial cell-specific G protein-coupled receptor 182, followed by in vivo and in vitro functional validation of its evolutionally conserved role in supporting HSPC expansion in zebrafish and mice. Finally, comparison between zebrafish CHT and human fetal liver highlighted the conservation and divergence across evolution. These findings enhance our understanding of the regulatory mechanism underlying hematopoietic niche for HSPC expansion in vivo and provide insights into improving protocols for HSPC expansion in vitro.

Keywords

References

  1. Gene. 2018 Jul 30;665:6-17 [PMID: 29704633]
  2. Nature. 2010 Mar 4;464(7285):108-11 [PMID: 20154733]
  3. ACS Pharmacol Transl Sci. 2020 Jun 24;3(4):676-689 [PMID: 32832870]
  4. Cell. 2008 Feb 22;132(4):631-44 [PMID: 18295580]
  5. Nature. 2018 Dec;564(7734):119-124 [PMID: 30455424]
  6. J Exp Med. 2017 Oct 2;214(10):2817-2827 [PMID: 28830909]
  7. Blood. 2008 Feb 1;111(3):1147-56 [PMID: 17934068]
  8. Immunity. 2006 Dec;25(6):963-75 [PMID: 17157041]
  9. Cell Stem Cell. 2018 May 3;22(5):627-638 [PMID: 29727678]
  10. Nature. 2019 Oct;574(7778):365-371 [PMID: 31597962]
  11. Dev Cell. 2019 Dec 2;51(5):645-657.e4 [PMID: 31708433]
  12. Biol Open. 2018 Aug 28;7(8): [PMID: 30097520]
  13. Blood. 2005 Dec 1;106(12):3803-10 [PMID: 16099879]
  14. Stem Cell Reports. 2017 May 9;8(5):1226-1241 [PMID: 28416284]
  15. Nature. 2018 Nov;563(7731):347-353 [PMID: 30429548]
  16. Development. 1995 Oct;121(10):3141-50 [PMID: 7588049]
  17. Blood. 2016 Sep 8;128(10):1336-45 [PMID: 27402973]
  18. Trends Cell Biol. 2018 Dec;28(12):976-986 [PMID: 29935893]
  19. Cell Stem Cell. 2014 Aug 7;15(2):154-68 [PMID: 24953181]
  20. J Immunol. 2020 May 1;204(9):2447-2454 [PMID: 32198141]
  21. Angiogenesis. 2017 Aug;20(3):307-323 [PMID: 28108843]
  22. Nature. 2007 Jun 21;447(7147):1007-11 [PMID: 17581586]
  23. Science. 2016 Jan 8;351(6269):176-80 [PMID: 26634440]
  24. Blood. 2011 Oct 13;118(15):4093-101 [PMID: 21856868]
  25. Exp Hematol. 2018 Aug;64:1-11 [PMID: 29807063]
  26. Nature. 2013 Mar 14;495(7440):231-5 [PMID: 23434755]
  27. Development. 2009 Feb;136(4):647-54 [PMID: 19168679]
  28. Dev Dyn. 2007 Nov;236(11):3088-99 [PMID: 17937395]
  29. Gene. 2001 Dec 27;281(1-2):43-51 [PMID: 11750126]
  30. Cell. 2015 Jan 15;160(1-2):241-52 [PMID: 25594182]
  31. Nature. 2018 Jan 24;553(7689):418-426 [PMID: 29364285]
  32. Nat Cell Biol. 2017 Apr;19(4):271-281 [PMID: 28319093]
  33. Blood Adv. 2018 Nov 13;2(21):3063-3069 [PMID: 30425071]
  34. Nature. 2018 Mar 1;555(7694):54-60 [PMID: 29466336]
  35. Dev Dyn. 1995 Jul;203(3):253-310 [PMID: 8589427]
  36. Elife. 2020 Jan 06;9: [PMID: 31904340]
  37. Biochem Biophys Res Commun. 2018 Feb 26;497(1):32-38 [PMID: 29408502]
  38. Nature. 2019 Apr;568(7751):193-197 [PMID: 30944477]
  39. Dev Cell. 2017 Aug 21;42(4):349-362.e4 [PMID: 28803829]
  40. Nat Biotechnol. 2018 Jun;36(5):411-420 [PMID: 29608179]
  41. Nature. 2019 Jul;571(7763):117-121 [PMID: 31142833]
  42. BMC Dev Biol. 2007 May 04;7:42 [PMID: 17477879]
  43. PLoS Genet. 2017 Jul 13;13(7):e1006780 [PMID: 28704371]
  44. Dev Dyn. 2003 Nov;228(3):323-36 [PMID: 14579373]
  45. Development. 2002 Jun;129(12):3009-19 [PMID: 12050147]
  46. Blood. 2000 Apr 1;95(7):2284-8 [PMID: 10733497]
  47. J Genet Genomics. 2018 Jun 8;: [PMID: 29929848]
  48. Nat Commun. 2015 Sep 28;6:8375 [PMID: 26411530]
  49. J Exp Med. 2017 Apr 3;214(4):1011-1027 [PMID: 28351983]
  50. Int J Hematol. 2019 Jan;109(1):18-27 [PMID: 30219988]
  51. Sci Rep. 2017 Mar 16;7:44644 [PMID: 28300168]
  52. Circ Res. 2008 Nov 7;103(10):1147-54 [PMID: 18832752]
  53. Cell Rep. 2019 Apr 30;27(5):1567-1578.e5 [PMID: 31042481]
  54. PLoS One. 2013;8(3):e58857 [PMID: 23554940]
  55. Nat Commun. 2019 Aug 21;10(1):3763 [PMID: 31434891]
  56. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  57. Trends Immunol. 2011 Oct;32(10):493-503 [PMID: 21802990]
  58. Development. 2008 May;135(10):1853-62 [PMID: 18417622]
  59. Annu Rev Cell Dev Biol. 2001;17:387-403 [PMID: 11687494]
  60. Nature. 2019 Apr;568(7751):259-263 [PMID: 30944473]
  61. Dev Biol. 2007 Mar 15;303(2):772-83 [PMID: 17125762]
  62. Nature. 2016 Jan 28;529(7587):528-31 [PMID: 26789249]
  63. Cell Metab. 2009 Aug;10(2):119-30 [PMID: 19656490]
  64. Nature. 2012 Jan 25;481(7382):457-62 [PMID: 22281595]
  65. Nature. 2006 Jun 29;441(7097):1100-2 [PMID: 16810247]
  66. Nature. 2012 May 30;485(7400):656-60 [PMID: 22660330]
  67. Dev Cell. 2015 Sep 28;34(6):621-31 [PMID: 26300447]

MeSH Term

Animals
Cell Lineage
Fetus
Gene Expression Profiling
Hematopoiesis
Hematopoietic Stem Cells
Humans
Liver
Mice
Single-Cell Analysis
Stem Cell Niche
Zebrafish