Tao Wu, Ming-Sheng Lei, Xu-Zhao Gao, Ting-Gang Xiong, Kang Yang, Qian Gong, Rui Tang, Yue-Peng Tian, Xiao-Hua Fu
Adams BD, Parsons C, Walker L, Zhang WC, Slack FJ (2017) Targeting noncoding RNAs in disease. J Clin Invest 127:761–771. https://doi.org/10.1172/JCI84424
[DOI:
10.1172/JCI84424]
Adelman K, Egan E (2017) Non-coding RNA: more uses for genomic junk. Nature 543:183–185. https://doi.org/10.1038/543183a
[DOI:
10.1038/543183a]
Blechacz B (2017) Cholangiocarcinoma: current knowledge and new developments. Gut Liver 11:13–26. https://doi.org/10.5009/gnl15568
[DOI:
10.5009/gnl15568]
Cai C, Huo Q, Wang X, Chen B, Yang Q (2017) SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun 485:272–278. https://doi.org/10.1016/j.bbrc.2017.02.094
[DOI:
10.1016/j.bbrc.2017.02.094]
Cao X, Xu J, Yue D (2018) LncRNA-SNHG16 predicts poor prognosis and promotes tumor proliferation through epigenetically silencing p21 in bladder cancer. Cancer Gene Ther 25:10–17. https://doi.org/10.1038/s41417-017-0006-x
[DOI:
10.1038/s41417-017-0006-x]
Christensen LL et al (2016) SNHG16 is regulated by the Wnt pathway in colorectal cancer and affects genes involved in lipid metabolism. Mol Oncol 10:1266–1282. https://doi.org/10.1016/j.molonc.2016.06.003
[DOI:
10.1016/j.molonc.2016.06.003]
Deniz E, Erman B (2017) Long noncoding RNA (lincRNA), a new paradigm in gene expression control. Funct Integr Genom 17:135–143. https://doi.org/10.1007/s10142-016-0524-x
[DOI:
10.1007/s10142-016-0524-x]
Fan X, Shi Z, Sun X (2014) Association of single nucleotide polymorphism of rs2910164 in pre-miR-146a sequence with cholangiocarcinoma. Chin J Gen Surg 23(8):1067–1071
Huang L et al (2019) Long non-coding RNA NNT-AS1 functions as an oncogenic gene through modulating miR-485/BCL9 in cholangiocarcinoma. Cancer Manag Res 11:7739–7749. https://doi.org/10.2147/CMAR.S207801
[DOI:
10.2147/CMAR.S207801]
Iacona JR, Lutz CS (2019) miR-146a-5p: expression, regulation, and functions in cancer. Wiley Interdiscip Rev RNA 10:e1533. https://doi.org/10.1002/wrna.1533
[DOI:
10.1002/wrna.1533]
Iacona JR, Monteleone NJ, Lemenze AD, Cornett AL, Lutz CS (2019) Transcriptomic studies provide insights into the tumor suppressive role of miR-146a-5p in non-small cell lung cancer (NSCLC) cells. RNA Biol 16:1721–1732. https://doi.org/10.1080/15476286.2019.1657351
[DOI:
10.1080/15476286.2019.1657351]
Kapranov P et al (2007) RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–1488. https://doi.org/10.1126/science.1138341
[DOI:
10.1126/science.1138341]
Lagos-Quintana M, Rauhut R, Lendeckel W, Tuschl T (2001) Identification of novel genes coding for small expressed RNAs. Science 294:853–858. https://doi.org/10.1126/science.1064921
[DOI:
10.1126/science.1064921]
Lamarca A, Hubner RA, David Ryder W, Valle JW (2014) Second-line chemotherapy in advanced biliary cancer: a systematic review. Ann Oncol 25:2328–2338. https://doi.org/10.1093/annonc/mdu162
[DOI:
10.1093/annonc/mdu162]
Li YL et al (2016) MiR-146a-5p inhibits cell proliferation and cell cycle progression in NSCLC cell lines by targeting CCND1 and CCND2. Oncotarget 7:59287–59298. https://doi.org/10.18632/oncotarget.11040
[DOI:
10.18632/oncotarget.11040]
Li X, Jin Y, Mu Z, Chen W, Jiang S (2017) MicroRNA-146a-5p enhances cisplatin-induced apoptosis in ovarian cancer cells by targeting multiple anti-apoptotic genes. Int J Oncol 51:327–335. https://doi.org/10.3892/ijo.2017.4023
[DOI:
10.3892/ijo.2017.4023]
Liu S, Zhang W, Liu K, Liu Y (2019) LncRNA SNHG16 promotes tumor growth of pancreatic cancer by targeting miR-218-5p. Biomed Pharmacother = Biomedecine & pharmacotherapie 114:108862. https://doi.org/10.1016/j.biopha.2019.108862
[DOI:
10.1016/j.biopha.2019.108862]
Long JP, Dong LF, Chen FF, Fan YF (2019) miR-146a-5p targets interleukin-1 receptor-associated kinase 1 to inhibit the growth, migration, and invasion of breast cancer cells. Oncol Lett 17:1573–1580. https://doi.org/10.3892/ol.2018.9769
[DOI:
10.3892/ol.2018.9769]
McGuire A, Brown JA, Kerin MJ (2015) Metastatic breast cancer: the potential of miRNA for diagnosis and treatment monitoring. Cancer Metastasis Rev 34:145–155. https://doi.org/10.1007/s10555-015-9551-7
[DOI:
10.1007/s10555-015-9551-7]
Peng T et al (2019) The interaction of LOXL2 with GATA6 induces VEGFA expression and angiogenesis in cholangiocarcinoma. Int J Oncol 55:657–670. https://doi.org/10.3892/ijo.2019.4837
[DOI:
10.3892/ijo.2019.4837]
Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641. https://doi.org/10.1016/j.cell.2009.02.006
[DOI:
10.1016/j.cell.2009.02.006]
Rizvi S, Gores GJ (2013) Pathogenesis, diagnosis, and management of cholangiocarcinoma. Gastroenterology 145:1215–1229. https://doi.org/10.1053/j.gastro.2013.10.013
[DOI:
10.1053/j.gastro.2013.10.013]
Song Y et al (2015) GATA6 is overexpressed in breast cancer and promotes breast cancer cell epithelial-mesenchymal transition by upregulating slug expression. Exp Mol Pathol 99:617–627. https://doi.org/10.1016/j.yexmp.2015.10.005
[DOI:
10.1016/j.yexmp.2015.10.005]
Sorensen KP et al (2013) Long non-coding RNA HOTAIR is an independent prognostic marker of metastasis in estrogen receptor-positive primary breast cancer. Breast Cancer Res Treat 142:529–536. https://doi.org/10.1007/s10549-013-2776-7
[DOI:
10.1007/s10549-013-2776-7]
Sun M, Kraus WL (2015) From discovery to function: the expanding roles of long noncoding RNAs in physiology and disease. Endocr Rev 36:25–64. https://doi.org/10.1210/er.2014-1034
[DOI:
10.1210/er.2014-1034]
Tian F et al (2013) Aberrant expression of GATA binding protein 6 correlates with poor prognosis and promotes metastasis in cholangiocarcinoma. Eur J Cancer 49:1771–1780. https://doi.org/10.1016/j.ejca.2012.12.015
[DOI:
10.1016/j.ejca.2012.12.015]
Tian F et al (2017) miR-124 targets GATA6 to suppress cholangiocarcinoma cell invasion and metastasis. BMC Cancer 17:175. https://doi.org/10.1186/s12885-017-3166-z
[DOI:
10.1186/s12885-017-3166-z]
Tyson GL, El-Serag HB (2011) Risk factors for cholangiocarcinoma. Hepatology 54:173–184. https://doi.org/10.1002/hep.24351
[DOI:
10.1002/hep.24351]
Uenishi T et al (2014) Proposal of a new staging system for mass-forming intrahepatic cholangiocarcinoma: a multicenter analysis by the Study Group for Hepatic Surgery of the Japanese Society of Hepato-Biliary-Pancreatic Surgery. J Hepatobiliary Pancreat Sci 21:499–508. https://doi.org/10.1002/jhbp.92
[DOI:
10.1002/jhbp.92]
Valle JW (2010) Advances in the treatment of metastatic or unresectable biliary tract cancer. Ann Oncol 21(Suppl 7):345–348. https://doi.org/10.1093/annonc/mdq420
[DOI:
10.1093/annonc/mdq420]
Wang D et al (2010) Human microRNA oncogenes and tumor suppressors show significantly different biological patterns: from functions to targets. PloS one. https://doi.org/10.1371/journal.pone.0013067
[DOI:
10.1371/journal.pone.0013067]
Weber SM et al (2015) Intrahepatic cholangiocarcinoma: expert consensus statement. HPB (Oxford) 17:669–680. https://doi.org/10.1111/hpb.12441
[DOI:
10.1111/hpb.12441]
Zhang RX, Zheng Z, Li K, Wu XH, Zhu L (2017) Both plasma and tumor tissue miR-146a high expression correlates with prolonged overall survival of surgical patients with intrahepatic cholangiocarcinoma. Medicine (Baltimore) 96:e8267. https://doi.org/10.1097/MD.0000000000008267
[DOI:
10.1097/MD.0000000000008267]
Zhang K, Chen J, Song H, Chen LB (2018) SNHG16/miR-140-5p axis promotes esophagus cancer cell proliferation, migration and EMT formation through regulating ZEB1. Oncotarget 9:1028–1040. https://doi.org/10.18632/oncotarget.23178
[DOI:
10.18632/oncotarget.23178]
Zhou C, Jiang CQ, Zong Z, Lin JC, Lao LF (2017) miR-146a promotes growth of osteosarcoma cells by targeting ZNRF3/GSK-3β/β-catenin signaling pathway. Oncotarget 8:74276–74286. https://doi.org/10.18632/oncotarget.19395
[DOI:
10.18632/oncotarget.19395]
Zhu Q et al (2019) Long non-coding RNA SNHG16 promotes proliferation and inhibits apoptosis of diffuse large B-cell lymphoma cells by targeting miR-497-5p/PIM1 axis. J Cell Mol Med 23:7395–7405. https://doi.org/10.1111/jcmm.14601
[DOI:
10.1111/jcmm.14601]