Single-cell analyses reveal SARS-CoV-2 interference with intrinsic immune response in the human gut.

Sergio Triana, Camila Metz-Zumaran, Carlos Ramirez, Carmon Kee, Patricio Doldan, Mohammed Shahraz, Daniel Schraivogel, Andreas R Gschwind, Ashwini K Sharma, Lars M Steinmetz, Carl Herrmann, Theodore Alexandrov, Steeve Boulant, Megan L Stanifer
Author Information
  1. Sergio Triana: Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. ORCID
  2. Camila Metz-Zumaran: Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany. ORCID
  3. Carlos Ramirez: Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany.
  4. Carmon Kee: Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
  5. Patricio Doldan: Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
  6. Mohammed Shahraz: Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  7. Daniel Schraivogel: Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  8. Andreas R Gschwind: Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
  9. Ashwini K Sharma: Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany. ORCID
  10. Lars M Steinmetz: Genome Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
  11. Carl Herrmann: Health Data Science Unit, Medical Faculty University Heidelberg and BioQuant, Heidelberg, Germany. ORCID
  12. Theodore Alexandrov: Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany. ORCID
  13. Steeve Boulant: Department of Infectious Diseases, Virology, Heidelberg University Hospital, Heidelberg, Germany.
  14. Megan L Stanifer: Department of Infectious Diseases, Molecular Virology, Heidelberg University Hospital, Heidelberg, Germany. ORCID

Abstract

Exacerbated pro-inflammatory immune response contributes to COVID-19 pathology. However, despite the mounting evidence about SARS-CoV-2 infecting the human gut, little is known about the antiviral programs triggered in this organ. To address this gap, we performed single-cell transcriptomics of SARS-CoV-2-infected intestinal organoids. We identified a subpopulation of enterocytes as the prime target of SARS-CoV-2 and, interestingly, found the lack of positive correlation between susceptibility to infection and the expression of ACE2. Infected cells activated strong pro-inflammatory programs and produced interferon, while expression of interferon-stimulated genes was limited to bystander cells due to SARS-CoV-2 suppressing the autocrine action of interferon. These findings reveal that SARS-CoV-2 curtails the immune response and highlights the gut as a pro-inflammatory reservoir that should be considered to fully understand SARS-CoV-2 pathogenesis.

Keywords

Associated Data

figshare | 13703752.v1

References

  1. Commun Biol. 2022 Jan 12;5(1):45 [PMID: 35022513]
  2. Gastroenterology. 2011 Nov;141(5):1762-72 [PMID: 21889923]
  3. Gastroenterology. 2020 Jul;159(1):214-226.e1 [PMID: 32247021]
  4. Mol Syst Biol. 2021 Apr;17(4):e10232 [PMID: 33904651]
  5. Nat Methods. 2020 Jun;17(6):629-635 [PMID: 32483332]
  6. J Clin Invest. 2020 May 1;130(5):2620-2629 [PMID: 32217835]
  7. Bioinformatics. 2016 Apr 15;32(8):1241-3 [PMID: 26668002]
  8. Cell Rep. 2020 Jul 7;32(1):107863 [PMID: 32610043]
  9. Lancet Gastroenterol Hepatol. 2020 May;5(5):434-435 [PMID: 32199469]
  10. Front Immunol. 2020 Dec 11;11:608645 [PMID: 33362795]
  11. Nat Microbiol. 2020 Jan;5(1):181-191 [PMID: 31686029]
  12. Am J Respir Crit Care Med. 2020 Sep 1;202(5):756-759 [PMID: 32663409]
  13. Nat Commun. 2020 Nov 18;11(1):5885 [PMID: 33208793]
  14. Cell Rep. 2020 Sep 22;32(12):108175 [PMID: 32946807]
  15. Sci Immunol. 2020 May 13;5(47): [PMID: 32404436]
  16. Gut. 2021 Apr;70(4):687-697 [PMID: 32571970]
  17. Cell Host Microbe. 2020 Dec 9;28(6):853-866.e5 [PMID: 33245857]
  18. Nat Methods. 2019 Dec;16(12):1226-1232 [PMID: 31570887]
  19. PLoS Pathog. 2019 Oct 31;15(10):e1008057 [PMID: 31671153]
  20. Cell. 2020 May 28;181(5):1016-1035.e19 [PMID: 32413319]
  21. Nature. 2020 May;581(7809):465-469 [PMID: 32235945]
  22. Front Med (Lausanne). 2020 Aug 05;7:370 [PMID: 32850890]
  23. Nat Methods. 2012 Jun 28;9(7):676-82 [PMID: 22743772]
  24. Gigascience. 2020 Dec 26;9(12): [PMID: 33367645]
  25. Front Immunol. 2017 Apr 21;8:459 [PMID: 28484457]
  26. Science. 2020 Sep 4;369(6508): [PMID: 32669297]
  27. PLoS Biol. 2018 Jul 3;16(7):e2005970 [PMID: 29969450]
  28. Nat Med. 2020 Jul;26(7):1077-1083 [PMID: 32405028]
  29. Biochem Biophys Res Commun. 2020 May 21;526(1):135-140 [PMID: 32199615]
  30. Cell Host Microbe. 2020 Jun 10;27(6):870-878 [PMID: 32464097]
  31. Cell Stem Cell. 2018 Dec 6;23(6):787-793.e6 [PMID: 30526881]
  32. Int J Mol Sci. 2019 Mar 21;20(6): [PMID: 30901970]
  33. Nat Genet. 2020 Dec;52(12):1283-1293 [PMID: 33077916]
  34. Front Microbiol. 2018 Sep 27;9:2326 [PMID: 30319594]
  35. EMBO J. 2020 May 18;39(10):e105114 [PMID: 32246845]
  36. Nat Protoc. 2020 Jul;15(7):2247-2276 [PMID: 32561888]
  37. Cell Host Microbe. 2020 Jun 10;27(6):883-890.e2 [PMID: 32407669]
  38. Cell. 2019 Jun 13;177(7):1888-1902.e21 [PMID: 31178118]
  39. Nature. 2020 Aug;584(7821):463-469 [PMID: 32717743]
  40. J Microbiol Immunol Infect. 2020 Jun;53(3):473-480 [PMID: 32276848]
  41. Cell. 2019 Jul 25;178(3):714-730.e22 [PMID: 31348891]
  42. Science. 2016 Sep 23;353(6306):1387-1393 [PMID: 27562956]
  43. Nat Med. 2020 Jul;26(7):1017-1032 [PMID: 32651579]
  44. Nat Biotechnol. 2020 Aug;38(8):970-979 [PMID: 32591762]
  45. Cell. 2020 May 28;181(5):1036-1045.e9 [PMID: 32416070]
  46. Mol Syst Biol. 2021 Jul;17(7):e9833 [PMID: 34309190]
  47. Nat Commun. 2020 Jul 30;11(1):3810 [PMID: 32733001]
  48. Lancet. 2020 Mar 28;395(10229):1033-1034 [PMID: 32192578]
  49. J Mol Cell Biol. 2020 Aug 1;12(8):562-568 [PMID: 32667995]
  50. Genome Biol. 2015 Dec 10;16:278 [PMID: 26653891]
  51. Cell. 2020 Apr 16;181(2):271-280.e8 [PMID: 32142651]
  52. Cell Host Microbe. 2020 Jun 10;27(6):992-1000.e3 [PMID: 32320677]
  53. Science. 2020 Jul 3;369(6499):50-54 [PMID: 32358202]
  54. Nat Med. 2020 May;26(5):681-687 [PMID: 32327758]
  55. Science. 2020 Aug 7;369(6504):718-724 [PMID: 32661059]
  56. Cell Microbiol. 2016 Dec;18(12):1831-1845 [PMID: 27279006]
  57. Life Sci Alliance. 2020 Jul 23;3(9): [PMID: 32703818]
  58. Gastroenterology. 2020 May;158(6):1831-1833.e3 [PMID: 32142773]

Grants

  1. 415089553/Deutsche Forschungsgemeinschaft (DFG)
  2. 272983813/Deutsche Forschungsgemeinschaft (DFG)
  3. 278001972/Deutsche Forschungsgemeinschaft (DFG)
  4. 240245660/Deutsche Forschungsgemeinschaft (DFG)
  5. 416072091/Deutsche Forschungsgemeinschaft (DFG)
  6. 272983813/Deutsche Forschungsgemeinschaft (DFG)
  7. 01KI20198A/Bundesministerium für Bildung und Forschung (BMBF)
  8. 01KI20239B/Bundesministerium für Bildung und Forschung (BMBF)
  9. 57440921/DAAD
  10. 773089/ERC consolidator grant

MeSH Term

COVID-19
Gastrointestinal Microbiome
Humans
In Situ Hybridization, Fluorescence
Intestines
Organoids
SARS-CoV-2
Sequence Analysis, RNA
Single-Cell Analysis

Word Cloud

Similar Articles

Cited By